## P525 [3832] - 302

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

#### PT - 10: Formation Evaluation - I

(New Syllabus) (Sem. - III)

Time: 3 Hours] [Max. Marks: 80

#### Instructions:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) What is the difference between natural and spectral Gamma Ray logs? Explain the qualitative and quantitative application of each of them.[20]

OR

Describe the conventional resistivity logging method with reference to principles, devices used, log presentation and track and applications.

- Q2) Describe in details self potential log with reference to principle, shape of SP curves, interpretation and applications.[15]
- Q3) Explain temperature logging, its objective, principle, property measured and applications. [15]
- **Q4**) Write short notes on any three of the following:

- a) Describe in a diagram different components of wireline logging.
- b) Mud logging techniques and equipment.
- c) Core Analysis.
- d) Principle, instruments and application of LWD.
- e) Delaware effect.

- Q5) Explain induction logging. When would you prefer to run it in a borehole for determination of formation resistivity (R<sub>1</sub>) when following conditions exist
  - a)  $R_{\rm m} < 5R_{\rm w}$ .
  - b)  $R_{t}^{m} < 500^{\circ} \Omega m$ .
  - c) Bed thickness is greator than 40". [15]
- Q6) Describe focussed micro log with reference to objectives and property measured, principle, electrode arrangement depth of investigation. [15]
- **Q7**) Write short notes on any two.

- a) Archie's Principle.
- b) Main electrochemical activities in development of SP in borehole.
- c) Difference between hydrostatic and lithostatic pressure environment and its relation to fluid pressure in borehole.

\*\*\*\*

### P526

## [3832] - 303

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

PT - 11: Drilling and Well Completions (New Course) Time: 3 Hours] [Max. Marks: 80 Instructions: *1*) Question No - 1 is compulsory. Out of the remaining attempt 4 questions. 2) Neat diagrams must be drawn wherever necessary. 3) Figures to the right indicate full marks. You are advised to attempt not more than 5 questions. 4) Q1) Describe in detail the components of a drill string with neat diagrams. [20] OR Describe the well control and power systems of an Oil rig in detail. Describe semi-submersible ships with reference to their components and **Q2**) a) advantages. [8] Describe in detail tripping operations. b) [7] *Q3*) Answer the following: Write a note on pipe - handling equipments. a) [8] Explain the design factors of roller cone bits. b) [7] **Q4**) Write notes on (Any three): [15] Pressure drop across bit. a) b) Drag bits.

- c) Rheological properties of mud.
- d) Classification of well types.
- e) Advantages and disadvantages of under balanced drilling.

Q5) Describe different types of casings along with their functions and advantages. [15]

- Q6) a) Describe the cement additives used as accelerators and retarders. [7]
  - b) Explain the causes of pipe sticking. [8]
- **Q7**) Write notes on: (Any three).

- a) Types & functions of packers.
- b) Multiple string completions.
- c) Lost circulation materials.
- d) Types of Fishing tools.
- e) Driller's method of well control.



#### P527

## [3832] - 401

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

#### PT - 13: Reservoir Performance

Time: 3 Hours [Max. Marks: 80

#### Instructions:

- 1) Question No. 1 is Compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- **Q1**) What are different types of pressures encountered in the reservoir? Explain the Horner's method of pressure build up analysis in detail. [20]

OR

Describe the multiple rate flow test analysis and drill stem test pressure analysis in detail.

- **Q2**) What are permeability curves? Describe in detail, the reservoir limit tests (RLT). [15]
- Q3) Define a Pressure Transient analysis. Describe in detail, the diffusivity equation and its solution.[15]
- **Q4**) Write notes on (Any Three):

- a) Flowing well performance.
- b) Injection well testing.
- c) Pulse testing.
- d) Pseudo pressure analysis.
- Q5) What are the parameters that are considered during a development plan of an oil field? Describe their importance in detail. [15]

Q6) What is meant by a tank model design? Describe the designing of a 3D models for reservoir simulation, in detail.[15]

**Q7**) Write notes on: (Any Three).

- a) History matching during reservoir simulation.
- b) Immiscible gas injection.
- c) IPR.
- d) Role of reservoir engineers.
- e) Oil recovery by nuclear explosion.



## P528 [3832] - 402

## M.Sc. (Applied)

#### PETROLEUM TECHNOLOGY

## PT - 14: Formation Evaluation - II (Sem. - IV)

Time: 3 Hours] [Max. Marks: 80

#### Instructions:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) Describe the SONIC or Litho density Log with reference to principles, tools, log representation, geological effects and applications.[20]
- Q2) Explain the environmental effects and geological factors influencing density logs. [15]
- Q3) Describe Schlumberger Neutron Tools and add a note on their depth of investigation and vertical resolution.[15]
- **Q4**) Write notes on (Any Three):

- a) Principle of Chlorine Log.
- b) Neutron sources used for neutron logging.
- c) Elastic properties determined from Sonic log.
- d) Variable density log (VDL).
- e) Neutron diffusions with reference to TDT log.
- Q5) Discuss the environmental factors influencing the response of EPT log, and a note on the applications of EPT log. [15]
- Q6) Explain the use of Electrical Image logs in sedimentary and structural interpretations.[15]

**Q7**) Write notes on: (Any Three).

- a) Principle of NML.
- b) Measurement theory of EPT log.
- c) Porosity overlays.
- d) Quantitative interpretation of electrical images.
- e) Uses of different cross plots.



P529

## [3832] - 403

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

## **PT-15: Production Operations**

(New Course) (Sem. - IV)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) What is formation damage? State different causes of damage. Explain in detail plugging caused by solids.[20]

OR

What are acid additives? How they help in simulation of an oil well?

**Q2**) State the important steps involved in a job design while carrying out fracturing. Explain job performance with reference to massive hydraulic fracture jobs.

[15]

Q3) What are scales? Describe types of scales and causes of scales.

[15]

**Q4**) Write notes on (Any Three):

- a) Concentric Tubing work over.
- b) Inflow performance Test.
- c) Types of perforators.
- d) Well killing.

- **Q5**) What is gravel packing? What are the practical considerations in gravel packing? [15]
- Q6) What is corrosion? List the causes of corrosion. Explain in detail how corrosion can be controlled. [15]
- **Q7**) Explain the following. (Any Two):

- a) Well stimulation with surfactants.
- b) Geologic factors affecting reservoir properties in sandstone reservoir.
- c) Cementing material.



P520

## [3832] - 201

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

# PT - 5: Fundamentals of Petroleum Geochemistry (New Course) (Sem. - II)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) What is the composition of petroleum? Describe paraffin series of hydrocarbons.[20]

OR

Explain in detail the non - hydrocarbon compounds of petroleum.

- Q2) Explain Tissot and Welte's chemical classification of crude oil. [15]
- Q3) What are "Oil Field Brines"? Describe Palmer's classification of oil field waters.
- **Q4**) Write notes on (Any three):

- a) Formation and types of kerogen.
- b) Isomerism.
- c) Olefin hydrocarbons.
- d) U.S. Bureau of Mines classification of crude oil.
- Q5) Describe in detail the following physical properties of crude oil. Refractive Index, Colour and fluorescence. [15]

Q6) Describe with the help of pressure - temperature diagram, the behaviour of n - paraffin mixtures at critical point.[15]

- **Q7**) Explain the following: (Any two).
  - a) Distillation of crude oil.
  - b) Second generation petrochemicals.
  - c) Stabilizers, Accelerators and Plasticizers.



### P521

## [3832] - 202

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

# PT - 6: Depositional System Analysis & Petroliferous Basins of India (New Course) (Sem. - II)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) How are fluvial models constructed? Which criteria would you apply to recognize ancient fluvial systems? State and diagrammatically represent basic fluvial systems giving their discharge characteristics.[20]

OR

What is a delta? What is progradation of a delta? Explain your answer with the help of Mississippi delta and Nile delta.

- Q2) Define 'Sedimentary Environment'. State the factors determining sedimentary environments. Give classifications of sedimentary environments you have studied. Which classification is quantitatively significant and applicable to ancient sediments.
  [15]
- Q3) Describe briefly Krishna Godavari basin, with reference to structural setting, geology and petroleum prospects. [15]
- **Q4**) Write notes on (Any Three):

- a) Growth faults and salt diapirism.
- b) Braided systems.
- c) Geology and petroleum prospects of Jaisalmer Basin.
- d) Progradation facies.

- Q5) Describe briefly how to recognize and discriminate depositional sequences in seismic stratigraphic interpretation.[15]
- Q6) What do you mean by Sedimentary Basins? Explain briefly with neat diagrams formation of sedimentary basins in the context of plate tectonics. [15]
- **Q7**) Explain the following: (Any Two).

- a) Sedimentary models as facies generators.
- b) Recognition of ancient shelf deposits.
- c) Depositional significance of slope geometry.



#### P522

## [3832] - 203

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

## **PT - 7: Petroleum Exploration**

(New Course) (Sem. - II)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) Describe seismic refraction technique of geophysical exploration and for what it is used in hydrocarbon exploration.[20]

OR

Describe why seismic technique of geophysical exploration is more extensively used than gravity and magnetic methods in petroleum exploration.

- **Q2**) a) Write a note on static and a static gravimeters.
  - b) Write a note on the factor (physical para) responsible for gravity and magnetic anomaly and explain with a diagram. [15]
- **Q3**) a) Enumerate the processes bringing about weathering of petroleum during its seepage to surface.
  - b) Explain the basis of near surface geochemical prospecting for hydrocarbons. [15]
- **Q4**) Write notes on any three.

- a) Use of radar imagery for oil prospecting.
- b) Worden gravimeter.
- c) Explain Huygen's principle with suitable diagram.
- d) Difference between critical distance and refraction.
- e) Gravitational field of the earth.

- Q5) Discuss the conditions indicating vertical migration of hydrocarbon. [15]
- Q6) Draw for a two layer earth model the direct, Seismic refraction and Seismic reflection time distance graph.[15]
- **Q7**) Write notes on any three.

- a) Microbial methods.
- b) Stress strain curve showing the elastic, plastic and nepture zone.
- c) Geophone vs hydrophone.
- d) Graphical method of anomaly separation.
- e) Noises during Seismic reflection data acquisition.



### P523

## [3832] - 204

## M. Sc. (Applied)

### PETROLEUM TECHNOLOGY

# PT - 8: Environmental Management & Economics (New Course)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) What are different sources and types of air pollutants observed in an oil industry? Describe the air pollution caused by flaring and the environmental factors associated with it.[20]

OR

Enumerate various types of pollution caused by the oil industry. Describe various types of pollution caused during exploration, drilling and production.

- Q2) What are the main sources of water pollution in an oil industry? Describe the standards of detecting water pollution. Also explain the procedure for the control and prevention of a oil spill.[15]
- Q3) What is meant by EIA model? Explain the development of Gandhar oil field in the light of EIA.[15]
- **Q4**) Write notes on (Any Three):

[15]

- a) Fresh water pollution in the oil industry.
- b) Environmental management on an offshore oil field.
- c) Future of energy resources.
- d) Air pollution due to LPG plant.
- e) Pitless drilling system and its importance.

P. T. O.

- **Q5**) State and explain all the factors responsible for the increase in drilling costs. Explain the ways in which these can be reduced during the oil field management. [15]
- Q6) What is the meaning of 'Decision Tree Analysis'? Describe the utility of it in the oil field management, giving suitable example. [15]
- **Q7**) Write notes on (Any Three):

- a) Concept of depreciation and depletion.
- b) EMV.
- c) Concept of elasticity of demand & supply.
- d) Law of variable proportion.
- e) Monopoly and monopolistic competition.



### P524

## [3832] - 301

## M. Sc. (Applied)

#### PETROLEUM TECHNOLOGY

## PT - 9: Reservoir Dynamics

(New Course) (Sem. - III)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Question No. 1 is compulsory. Out of the remaining attempt 4 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) You are advised to attempt not more than 5 questions.
- Q1) Define Viscosity. Explain how viscosity of reservoir fluids affects the reservoir conditions.[20]

OR

What is meant by 'Drive mechanisms' in the reservoir? Explain, in detail, the Dissolved gas and Gas cap drives, along with their characteristics and utility.

**Q2**) What are volumetric and non - volumetric reservoirs? Explain the nature of undersaturated oil reservoirs with regard to FVF and solubility of gas.

[15]

**Q3**) Write notes on (Any Three):

- a) Use of Perfect gas law in Reservoir studies.
- b) Water Drive.
- c) Compressibility of fluids.
- d) Sources of heat energy in reservoir.
- e) Linear flow of incompressible fluids steady state.

- Q4) What is meant by MBE? Explain, in detail, how MBE for gas reservoirs can be calculated.[15]
- Q5) What are the uses of PVT analyses? Explain, how various types of PVT data are obtained for PVT analyses & evaluated. [15]
- **Q6**) Write notes on (Any three).

- a) Water production trends in reservoirs.
- b) Calculation of 'Oil in Place' by volumetric method.
- c) Effects of permeability and thickness of formations on pressure conditions of well bore.
- d) Applications of diffusivity equation in reservoir studies.
- e) Radial flow of incompressible fluids steady state.
- Q7) Describe the method for estimation of radial flow of compressible fluids within the reservoirs and its applications.[15]

