M.A./M.Sc. (Mathematics) (2005 Pattern) Examination, 2010 MT 706 : NUMERICAL ANALYSIS (Old)

Time: 3 Hours

- **N.B.**: i) Attempt any five questions. ii) Figures to the **right** indicate **full** marks. iii) Use of non-programmable scientific calculators is **allowed**.
- 1. a) Determine the order of approximation for the sum and product of the expansions;

$$e^{h} = 1 + h + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} + o(h^{4})$$
 and

$$\cosh = 1 - \frac{h^2}{2!} + \frac{h^4}{4!} + o(h^6)$$
. 8

b) Investigate the nature of the iteration $p_{n+1} = g(p_n)$ for the function

$$g(x) = 1 + x - \frac{x^2}{4}.$$
 8

- 2. a) Perform four iterations of bisection method to solve $x \sin x = 1$ on [0, 2]. 8
 - b) Suppose Newton-Raphson iteration produces a sequence $\{p_n\}_{n=0}^{\infty}$ that converges to the multiple root P of order M of f(x). Then prove that the convergence is linear.
- 3. a) For the linear system

$$x^{2} - y - 0.2 = 0$$

 $y^{2} - x - 0.3 = 0$,

start with $(p_0, q_0) = (1.2, 1.2)$ and use Newton's method to compute (p_1, q_1) 8 and (p_2, q_2) .

Max. Marks: 80

[3721] – 36

[3721] - 36

- -2-
- b) Find the triangular factorization A = LU for the matrix.
 - $\begin{bmatrix} 1 & 1 & 0 & 4 \\ 2 & -1 & 5 & 0 \\ 5 & 2 & 1 & 2 \\ -3 & 0 & 2 & 6 \end{bmatrix}$
- 4. a) Solve the following system by Gauss-Seidel method.

4x - y + z = 7 4x - 8y + z = -21 -2x + y + 5z = 15 start with (1, 2, 2) and perform two iterations. 8

- b) Prove that the Jacobi iterations converge to the solution of the linear system Ax = b starting with any initial vector $x^{(0)}$ provided that the matrix A is strictly diagonally dominant.
- 5. a) Let $f(x) = \frac{8x}{2^x}$. Use cubic Lagrange interpolation based on the nodes x = 0, 1, 2, 3, to approximate f(7.5). Compare with true value. 8
 - b) Construct a divided difference table for $f(x) = \cos x$ based on the five nodes x = 0, 1, 2, 3, 4. Hence find P₂(1.5).
- 6. a) Use Taylor expansions and derive the central-difference formula :

$$f'(x) = (f(x+h) - f(x-h)) / 12h.$$
 8

b) Use the numerical differentiation formula

 $f''(x_0) = [-f_2 + 16f_1 - 30f_0 + 16f_{-1} - f_{-2}]/12h^2$, and h = 0.1 to approximate f''(1) for the function $f(x) = x^6$. Compare with true value. 8

8

8

7. a) Derive Trapezoidal rule for numerical integration and hence find the value of

$$\pi$$
 by evaluating $\int_{0}^{1} \frac{1}{1+x^2} dx$. 8

- b) Determine the degree of precision of the Simpson's $\frac{3}{8}$ rule. 8
- 8. a) Use Runge-Kutta method RK4 and compute the numerical solution of the system

$$\frac{dx}{dt} = x + 2y$$

$$\frac{dy}{dt} = 3x + 2y$$

$$x(0) = 6$$

$$y(0) = 4,$$
at t = 0.02.
8

b) For any fixed θ , show that

$$R = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
is an orthogonal matrix. 4

c) Construct Householder matrix P for $w = [0, 0, 1]^{T}$.

B/I/10/190

[3721] - 36

4

-3-

M.A./M.Sc. Examination, 2010 **MATHEMATICS** MT 807 : Combinatorics (Old) (2005 Pattern)

Time: 3 Hours

N.B.: 1) Attempt any five questions. 2) Figures to the **right** indicate **full** marks.

- 1. A) What is the number of ways that a five card hand has :
 - i) each of the four values Ace, King, Queen and Jack?
 - ii) the same number of hearts and spades ?
 - B) How many arrangements of 5 α 's, 5 β 's and 5 γ 's are there with at least one β and atleast one γ between each successive pair of α 's ? 6
 - C) Prove the following binomial identity using combinatorial argument

$$\begin{pmatrix} n \\ 0 \end{pmatrix} + \begin{pmatrix} n+1 \\ 1 \end{pmatrix} + \dots + \begin{pmatrix} n+r-1 \\ r-1 \end{pmatrix} + \begin{pmatrix} n+r \\ r \end{pmatrix} = \begin{pmatrix} n+r+1 \\ r \end{pmatrix}.$$
 4

2. A) If there are n-objects with r_1 of type 1, r_2 of type 2, ..., r_m of type m, where $r_1 + r_2 + ... + r_{m-1} + r_m = n$, then the number of arrangements of these n objects denoted by P (n; $r_1, r_2, ..., r_m$). Prove by mathematical induction that

$$P(n; r_1, r_2, ..., r_m) = {n \choose r_1} \cdot {n - r_1 \choose r_2} \cdot {n - r_1 - r_2 \choose r_3} \dots {n - r_1 \dots r_{m-1} \choose r_m} = \frac{n!}{r_1! r_2! \dots r_m!} \cdot 6$$

B) How many integer solutions are there to the equation $x_1 + x_2 + x_3 + x_4 = 12$, with $x_i \ge 0$? How many solutions with $x_i \ge 1$? How many solutions with $x_1 \ge 2$, $x_2 \ge 2, x_3 \ge 4, x_4 \ge 0$?

C) Find the number of ways to get 25 rupees from 10 distinct people, if a person can give either 3 rupees, 8 rupees or none, using generating function.

P.T.O.

6

4

[3721] – 47

Max. Marks: 80

3.	A) Explain why $(1 + x + x^2 + x^3 + x^4)^r$ is not a proper generating function for the number of ways to distribute r-jelly beans among r-children with no child getting more than four jelly beans.	6
	B) Show with generating functions that every positive integer can be written as a unique sum of distinct powers of 2.	6
	C) Show that the number of partitions of an integer r as a sum of m positive integers is equal to the number of partitions of r, as a sum of positive integers, the largest of which is m.	
4.	A) Using exponential generating function find how many r-digit quaternary sequences are there in which the total number of 0's and 1's is even ?	6
	B) Build a generating function using summation method for $a_r = (r + 1)r (r - 1)$.	6
	C) Find the number of 7-bead necklaces distinct under rotations using three black and four white beads.	4
5.	A) State and prove Burnside's Theorem.	8
	B) Suppose we draw n-straight lines on a piece of paper so that every pair of lines intersect (but no three lines intersect at a common point). Use recurrence relation and find into how many regions do these n lines divide the plane.	
6.	A) State and prove the Inclusion-Exclusion Formula.	6
	B) How many different 3-colorings of the bands of an n band baton are there if baton is unoriented ?	6
	C) Solve the following recurrence relation	
	$a_n = a_{n-1} + 3(n-1), a_0 = 1.$	4

6

4

- 7. A) Using Inclusion-Exclusion theorem, find the number of n digit ternary sequences with atleast one 0, atleast one 1 and atleast one 2.
 - B) How many ways are there to color the four vertices in the graph shown below with n colors such that vertices with a common edge must be different colors ?6

C) Find the rook polynomial for the following figure.

8.	A) Find the pattern inventory of black-white edge colorings of a tetrahedron.	6
	B) How many arrangements of the letters a, e, i, o, u, x, x, x, x, x, x, x, x, x (8 x's) are there if no two vowels can be consecutive ?	6
	C) Find the number of different r-arrangements of objects chosen from unlimited supplies on n types of objects, using exponential generating function.	4

B/I/10/190

M.A./M.Sc. (Semester – I) Examination, 2010 MATHEMATICS (2008 Pattern) MT : 501 : Real Analysis – I

Time: 3 Hours

Max. Marks: 80

N.B. : 1) Attempt any five questions. 2) All questions carry equal marks.

- 1. a) State and prove Cauchy-Schwarz's inequality.
 - b) Show that the set of rational numbers is countable.
 - c) Suppose A is any set and P(A) is its power set. Is any map F: A → P(A) onto ? Justify.

2. a) Show that
$$d(x, y) = \frac{|x - y|}{1 + |x - y|}$$
 defines a metric on $(0, \infty)$. 6

- b) Give an example of a sequence $\{f_k\}_{k=1}^{\infty}$ of non-negative measurable functions on A, where $A \in M$ and $f = \lim_{k \to \infty} \inf_k f_k$ on A such that $\int_A f dm < \lim_{k \to \infty} \inf_k f_k dm$. 5
- c) Show that compact subsets of a metric space are closed.
- 3. a) Let A ⊂ (M, d) then prove that x ∈ A iff B_∈(x) ∩ A ≠ φ for every ∈ > 0.
 b) Is Cantor set compact ? What is its interior ? Explain.
 - c) With usual notations, show that, $L^{p}(\mu)$ is a linear space where $1 \le p < \infty$.

4. a) Define a measurable function on IRⁿ and show that following statements are equivalent. 8

- i) $\{x / f(x) > a\}$ is measurable for every $a \in \mathbb{R}$
- ii) $\{x / f(x) \ge a\}$ is measurable for every $a \in \mathbb{R}$
- iii) $\{x / f(x) < a\}$ is measurable for every $a \in \mathbb{R}$
- iv) $\{x / f(x) \le a\}$ is measurable for every $a \in \mathbb{R}$

[3721] - 101

5

6

5

5

6

6

[3721] - 101

	b) Find limit points of \mathbb{Q} and $\left\{\frac{1}{n}\right\}$ where $n \in \mathbb{IN}$.	4
	c) Show that IR with discrete metric space is not separable.	4
5.	a) State and prove Monotone Convergence Theorem.	5
	b) Draw the following graphs in \mathbb{R}^2 .	6
	i) $\left\{ \left\ u \right\ _1 < 1 \right\}$ ii) $\left\{ \left\ u \right\ _2 < 1 \right\}$ iii) $\left\{ \left\ u \right\ _{\infty} < 1 \right\}$ for $u \in \mathbb{R}^2$.	
	c) Show that $\sigma:[0,1] \rightarrow [a, b]$ defined by $\sigma(t) = a + t(b-a)$ is homeomorphism and $f \in C[a, b]$ if $f_0 \sigma \in C[0, 1]$.	5
6.	a) State and prove Holder's inequality.	6
	b) Show that a Riemann integrable function is also a Lebesgue integrable.	5
	c) Suppose $\{F_n\}$ is a decreasing sequence of non-empty closed sets in a complete	
	space (M, d), with diam $F_n \to 0$, as $n \to \infty$ then show that $\bigcap_{n=1}^{\infty} F_n \neq \phi$.	5
7.	a) Show that $\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin mx}{\sqrt{\pi}}\right\}$ where n, m \in IN forms an orthonormal set	
	in $L^2([-\pi,\pi])$.	6
	b) Show that (M, d) is compact then every open cover of M has a finite subcover.	8
	c) State Banach contraction principle.	2
8.	a) Show that any non-empty complete metric space is of second category.	6
	b) State and prove Arzela-Ascoli Theorem.	8
	c) Show that every continuous function is measurable.	2
		405

M.A./M.Sc. (Semester – I) Examination, 2010 MATHEMATICS (2008 Pattern) MT-502 : Advanced Calculus

Time: 3 Hours

N.B.: 1) Attempt any five questions.
2) Figures to the right indicate full marks.
3) Notation : {e₁, e₂,..., e_n} denote standard basis for IRⁿ.

- 1. a) Assume that $f: S \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ is differentiable scalar field at a point \vec{a} in Int S with total derivative $T_{\vec{a}}$; Then prove that $f'(\vec{a}; \vec{y})$ exists for every $\vec{y} \in \mathbb{R}^n$. 6
 - b) Let $\vec{f} : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a vector field, and let $\vec{f}(\vec{x}) = f_1(\vec{x})\vec{e}_1 + ... + f_m(\vec{x})\vec{e}_m$, where $f_i : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, i = 1, 2, ..., m are scalar fields. Then prove that \vec{f} is continuous if and only if component function f_i is continuous.
 - c) Let $\vec{f} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ and $\vec{g} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be two vector fields defined as : $\vec{f}(x, y) = e^{x+2y}\vec{e}_1 + \sin(y+2x)\vec{e}_2$ and $\vec{g}(u, v, w) = (u+2v^2+3w^3)\vec{e}_1 + (2v-u^2)\vec{e}_2$. Compute $D\vec{h}(1,-1,1)$, where $\vec{h} = \vec{f}o\vec{g}$.
- 2. a) If \vec{f} is a vector field, show that \vec{f} is differentiable at \vec{a} then it is continuous at \vec{a} .
 - b) Find the directional derivative of the scalar field $f(x, y) = x^2 3xy$ along the parabola $y^2 = x^2 x + 2$ at the point (1, 2).
 - c) State and prove chain rule for derivatives of vector fields.
- **P.T.O.**

[3721] - 102

Max. Marks : 80

6

4

4

8

8

8

8

8

4

- 3. a) Define line integral of a vector field along the curve. Illustrate by an example that line integral is independent of the path along a curve joining the two points.
 - b) Give an example of a vector field $\vec{f}(x, y)$ defined on a open set $S \subset \mathbb{R}^n$ such that $D_1 \vec{f}_2 = D_2 \vec{f}_1$ but \vec{f} is not gradient on S.
- 4. a) Prove that the line integral of a continuous gradient is zero around every piecewise smooth closed path in an open connected set S in IRⁿ.

b) i) Evaluate
$$\int_{C} \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$$
, where C is the circle $x^2 + y^2 = 4$ traversed

in a counter clockwise direction.

ii) Let
$$\vec{f}(x, y) = \frac{-y}{x^2 + y^2} \vec{e}_1 + \frac{x}{x^2 + y^2} \vec{e}_2$$
 for $(x, y) \neq (0, 0)$. Show that $\int_C \vec{f}(x, y) \vec{f}(x, y) dx = \int_C \vec{f}(x, y) dx$

is not zero, where C is the circle of radius a > 0 with center at origin.

5. a) Prove that a continuous function f on a rectangle Q is integrable on Q. 8

b) Evaluate
$$\iint_Q xy(x+y)dxdy$$
, where $Q = [0, 1] \times [0, 1]$. 4

c) Evaluate
$$\iint_{Q} \sin^2 x \sin^2 y \, dx \, dy$$
, where $Q = [0, \pi] \times [0, \pi]$. 4

6. a) State Green's theorem for plane region and verify it by an example. 8

b) Evaluate $\iiint_{S} xyzdxdydz$, where

$$\mathbf{S} = \{ (\mathbf{x}, \mathbf{y}, \mathbf{z}) / \mathbf{x}^{2} + \mathbf{y}^{2} + \mathbf{z}^{2} \le 1, \, \mathbf{x} \ge 0, \, \mathbf{y} \ge 0, \, \mathbf{z} \ge 0 \}.$$

c) State only the general formula for change of variables in double integrals and explain the terms involved.

-2-

[3721] - 102

6

4

6

4

6

7. a) Define surface integral and explain the terms invovled in it. 6

-3-

b) Let $x^2 + y^2 + z^2 = 1$ be a sphere of radius one. Find the fundamental vector product in explicit form of this sphere. Also discuss the singular points of this surface.

c) If
$$\vec{r}(u,v) = (x_0 + a_1u + b_1v)\vec{e}_1 + (y_0 + a_2u + b_2v)\vec{e}_2 + (z_0 + a_3u + b_3v)\vec{e}_3$$
,

find
$$\frac{\partial \vec{v}}{\partial u} + \frac{\partial \vec{v}}{\partial v}$$
 in terms of u and v.

- 8. a) State and prove divergence theorem.
 - b) Show that $\operatorname{curl}(\operatorname{grad}\phi) = 0$.
 - c) Use transformation formula to transform the integral $\iiint_{S} f(x, y, z) dx dy dz$, where S is sphere of radius a by using $x = \rho \cos \theta \cos \phi$, $y = \rho \sin \theta . \cos \phi$, $z = \rho \sin \phi$.

B/I/10/510

M.A./M.Sc. (Semester – I) Examination, 2010 MATHEMATICS (2008 Pattern) MT 503 : Linear Algebra

Time : 3 Hours

Max. Marks: 80

Instructions : 1) Answer any five questions.2) Figures to the right indicate full marks.

- 1. a) Let V be a finite dimensional vector space over K, and let X and Y be finite subsets of V. If Y is linearly independent and $V = \langle X \rangle$, prove that $|Y| \le |X|$ 6
 - b) Let V and V' be finite dimensional vector spaces over K. Prove that V ≃ V' if only if dim V = dim V'.
 - c) If X and Y are subspaces of a vector space V such that V/X and V/Y and finite dimensional, prove that the quotient space $V/(X \cap Y)$ is also finite dimensional.
- 2. a) Let V_1, \dots, V_m be vector spaces over a field K. Prove that $V = V_1 \oplus \dots \oplus V_m$ is finite dimensional if and only if each V_i is finite dimensional. **6**
 - b) Let D be the differential operator on $\mathbb{R}_3[x]$, write the matrix representation of D with respect to the ordered basis { $1 + x, x + x^2, x^2 + x^3, x + x^3$ }. **6**
 - c) Prove that the geometric multiplicity of an eigenvalue of a linear operator cannot exceed its algebraic multiplicity.
- 3. a) Let B be an ordered basis of an n-dimensional vector space V over K. If S and T are linear operators on V, Prove that [S₀ T]_B = [S]_B [T]_B and T is a bijection if and only if [T]_B is an invertible matrix.
 - b) Let V be a finite dimensional vector space over K and let T be a linear operator on V. If X and Y are T- invariant subspaces of V and V = X ⊕ Y, prove that X° and Y° are T°-invariant subspaces of V° and V° = X°⊕ Y°.

P.T.O.

4

4

[3721] – 103

4

7

5

4

6

4

[3721] - 103

- c) Let K be a field and let $p(x) = x^n + a_{n-1} x^{n-1} + \dots + a_0$ be a monic polynomial of degree n. Let A be an n×n matrix given by : 4
 - $\mathbf{A} = \begin{bmatrix} 0 & \cdots & 0 & -a_0 \\ 1 & \cdots & 0 & -a_1 \\ \vdots & \ddots & & \vdots \\ 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$

Prove that the characteristic polynomial of A is p(x).

- 4. a) Let V be a finite dimensional vector space over K of dimension n and let T be a linear operator on V. If m_T (x) = p (x)^r, where p (x) is a monic irreducible polynomial of degree m, prove that m divides n.
 5
 - b) Prove that two diagonalizable linear operators S and T on V are simultaneously diagonalizable if and only if they commute, that is ST = TS.
 7
 - c) Prove that a Jordan chain consists of linearly independent vectors.
- 5. a) Let V be a finite dimensional inner product space and let f be a linear functional on V. Prove that there exists a unique vector x in V such that f (v) = (v, x), for all v in V.
 - b) Let V and W be finite dimensional inner product spaces and let $T \in \langle (V, W)$. Prove that there exists a unique linear mapping $T^*: W \to V$ such that for all $v \in V$ and $w \in W$, $(Tv, w) = (v, T^*w)$.
 - c) Prove that a Jordan subspace for a linear operator T is T-cyclic.
- 6. a) Prove that a self adjoint operator T on a finite dimensional inner product space V is orthogonally diagonalizable.

b) Let
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{3\times 3}$$
 find a polar decomposition of A. 6

c) Let T be a unitary operator on V, dim V = n. If B_1 and B_2 are ordered orthonormal basis of V, prove that $_{B_2}[T]_{B_1}$ is a unitary matrix.

-2-

7.	a)	Prove that a bilinear form is reflexive if and only if it is either symmetric or alternating.	6
	b)	Let A, B $\in K^{n \times n}$. Prove that bilinear spaces (k^n, θ_A) and (k^n, θ_B) are isomorphic if and only if A and B are congruent matrices.	6
	c)	Let ϕ be a nondegenerate reflexive bilinear form on a finite dimensional vector space V over K. For a subspace S of V, prove that $S^{\perp \perp} = S$.	4
8.	a)	Prove that a symmetric bilinear form on a finite dimensional vector space V over a field K of characteristic not equal to 2 is diagonalizable.	6
	b)	Prove that two triangulable $n_{\times}n$ matrices are similar if and only if they have the same Jordan canonical form.	6
	c)	Give all possible Jordan canonical forms if the characteristic polynomial is $(x - 2)^3 (x - 5)^2$.	4

_

-3-

B/I/10/505

M.A./M.Sc. (Semester – I) Examination, 2010 **MATHEMATICS MT – 505 : Ordinary Differential Equations** (2008 Pattern)

Time: 3 Hours

Max. Marks: 80

N.B.: 1) Answer any five questions. 2) Figures to the **right** indicate **full** marks.

- 1. a) Find the general solution of $y''-y'-2y=4x^2$.
 - b) If q(x) < 0, and if u(x) is a nontrivial solution of u'' + q(x)u = 0, prove that u(x) has at most one zero.
 - c) Let y(x) and z(x) be nontrivial solutions of y''+q(x)y=0 and z''+r(x)z=0, where q(x) and r(x) are positive functions such that q(x) > r(x). Prove that y(x) vanishes at least once between any two successive zeros of z(x).
- 2. a) Find the general solution of $(1 + x^2) y'' + 2xy' 2y = 0$ in terms of power series in x.
 - b) Verify that the origin is a regular singular point and calculate two independent Frobenius series solutions for the equation 4xy''+2y'+y=0.
 - c) Are the functions $\phi_1(x) = \sin x$ and $\phi_2(x) = e^{ix}$ defined on $-\infty < x < \infty$ linearly independent? Why?
- 3. a) Find the general solution of $(2x^2+2x)y''+(1+5x)y'+y=0$ near the singular point x = 0. 8
 - b) Find the general solution of the system

$$\frac{dx}{dt} = 3x - 4y$$
$$\frac{dy}{dt} = x - y$$

P.T.O.

[3721] - 105

5

5

6

5

8

3

[3721] - 105

- 4. a) If a is an arbitrary constant, prove that the system $\frac{dx}{dt} = ax y$, $\frac{dy}{dt} = x + ay$ has the origin as only its critical point, find the differential equation of the paths and solve this equation to find the paths.
 - b) If $a_1b_2 a_2b_1 \neq 0$, show that the system $\frac{dx}{dt} = a_1x + b_1y$, $\frac{dy}{dt} = a_2x + b_2y$ has infinitely many critical points, none of which are isolated.
 - c) Show that $y(x) = c_1 \sin x + c_2 \cos x$ is the general solution of y'' + y = 0 on any interval, and find the particular solution for which y(0) = 2 and y'(0) = 3. 4
- 5. a) Solve the following initial value problem by Picard's method and compare the result with exact solution

$$\frac{dy}{dx} = 2x(1+y), y(0) = 0.$$

- b) Show that the function f(x,y) = xy² satisfies a Lipschitz condition on any rectangle a≤x≤b and c≤y≤d but it does not satisfy a Lipschitz condition on any strip a≤x≤b and -∞<y<∞.
- 6. a) Let x_0 be an ordinary point of the differential equation y'' + P(x)y' + Q(x)y = 0, and let a_0 , a_1 be arbitrary constants. Prove that there exists a unique function y(x) that is analytic at x_0 , is a solution of above differential equation in a certain neighbourhood of this point, and satisfies the initial conditions $y(x_0) = a_0$ and $y'(x_0) = a_1$.
 - b) Find the eigenvalues and eigenfunctions of

$$y''-4\lambda y'+4\lambda^2 y=0$$
; $y'(1)=0$, $y(2)+2y'(2)=0$.

8

8

8

6

6

- 7. a) Find a recurrence formula and the indicial equation for an infinite series solution around x = 0 for the differential equation $8x^2y'' + 10xy' + (x-1)y = 0$.
 - b) Solve $y^{(4)} = 5x$ by variation of parameters.
- 8. a) Find the general solution near x = 0 of the hypergeometric equation

$$x(1-x)y''+[c-(a+b+1)x]y'-aby=0$$
 where a, b, and c are constants. 8

b) Let ϕ be any solution of $L(y) = y'' + a_1 y + a_2 y = 0$, on an interval I containing a point x_0 . Prove that for all x in I $\|\phi(x_0)\| e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\| e^{k|x-x_0|}$.

where $\|\phi(x)\| = [|\phi(x)|^2 + |\phi'(x)|^2]^{\frac{1}{2}}$, $k = 1 + |a_1| + |a_2|$.

	Г	
ż	2	

8

8

B/I/10/385

[3721] - 105

-3-

M.A./M.Sc. (Sem. – II) (2008 Pattern) Examination, 2010 MATHEMATICS MT 601 : General Topology (New) Time: 3 Hours Max. Marks: 80

N.B.: i) Attempt **any five** questions. ii) Figures to the **right** indicate marks.

product topology on $X \times Y$.

 $B = \{(a, b / a < b, a \text{ and } b \text{ are rational } \}$ is a basis that generates the standard topology on **R**. 6 B) Show that the intersection of two topologies on a set X is a topology on X. Show that union of two topologies on X need not be a topology. 5 C) Let $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ be projection maps. Prove that π_1 and π_2 are open maps. Further, prove that the collection $S = \left\{ \pi_1^{-1}(u) / \text{Uis open in } X \right\} \cup \left\{ \pi_2^{-1}(v) / \text{Vis open in } Y \right\}$ is a sub-basis for the

1. A) Define a basis for a topology on a set X. Show that the countable collection

- 2. A) Define a convex subset Y of an ordered set X. Prove that intervals and rays in X are convex in X, but converse is not true.
 - B) Let X be a topological space satisfying T_1 axiom and let A be a subset of X. Prove that the point x is a limit point of A if and only if every neighbourhood of x contains infinitely many points of A.
 - C) Give an example of a topological space which is not a Hausdorff space. Further, prove that a sequence of points of a Hausdorff space X converges to at most one point of X.
- 3. A) State and prove the Pasting Lemma. Is the function $f: [0, 1] \cup [2, 3] \rightarrow \mathbb{R}$

defined by
$$f(x) = \begin{cases} x, & \text{if } x \in [0,1] \\ x+1, & \text{if } x \in [2,3] \end{cases}$$
 continuous ? 6

[3721] - 201

5

6

5

[3721] - 201

	B) Find the closures of the sets \mathbb{Z} , \mathbb{Q} and $\{Y_n n=1,2,3,\}$ in I R.	5
	C) Show that the subspace [a, b] of \mathbb{R} is homeomorphic with [0, 1]. Further, show that [0, 1] is not homeomorphic with the subspace S ¹ of \mathbb{R}^2 .	5
4.	A) Prove that the topologies on \mathbb{R}^2 induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^2 .	6
	B) Let $f : \mathbb{R} \to \mathbb{R}^w$ be defined by $F(t) = (t, t, t,)$. Prove that f is not continuous if \mathbb{R}^w is given the box topology.	5
	C) Give an example of a quotient map which is not a closed map.	5
5.	A) Prove that a finite Cartesian product of connected spaces is connected.	6
	B) Prove that every path connected space is connected. Is converse true ? Justify your answer.	5
	C) What are components and path components of \mathbb{R}_{e} ? What are the continuous maps $f : \mathbb{R} \to \mathbb{R}_{e}$?	5
6.	A) Prove that a subspace A of \mathbb{R}^n is compact if and only if it is closed and is bounded in the Euclidean metric d or the square metric ρ .	6
	B) Show that if Y is compact, then the projection map $\pi_1: X \times Y \to X$ is a closed map.	5
	C) Let (x, d) be a compact metric space. Let $f: X \to X$ be a function such that $d(f(x), f(y)) = d(x, y)$ for all $x, y \in X$. Show that f is a homeomorphism.	5
7.	A) Suppose that X has a countable basis, then prove that every open covering of X contains a countable subcollection covering X.	6
	B) Show that \mathbb{R}_{e} and I_{o}^{2} are not metrizable.	5
	C) Let f, g : X \rightarrow Y be continuous maps. Suppose that Y is Hausdorff. Show that the set {x / f(x) = g (x)} is closed in X.	5
8.	A) Prove that every metrizable space is normal.B) Prove that a connected regular space having more than one point is uncountable.C) Show that a closed subspace of a normal space is normal.	6 5 5

-2-

e :	3 Hours Max. Marks	: 80
	N.B.:1) Answer any five questions. 2) Figures to the right indicate full marks.	
a)	If $f : [a, b] \rightarrow \mathbb{R}$ is of bounded variation, then prove that f is also bounded	
	and satisfies $\left\ f\right\ _{\infty} \leq \left f(a)\right + V_a^b f$.	8
b)	Prove that BV [a, b] is complete under the norm $\ f\ _{BV} = f(a) + V_a^b f$.	8
a)	State Helly's first theorem and prove that $\ f_1 f_2\ _{BV} \le \ f_1\ _{BV} \ f_2\ _{BV}$.	8
b)	Give an example to show that "Every bounded function may not be Riemann - Stieltjes integrable".	8
a)	Prove that $C[a,b] \subset R\alpha[a,b]$ for any increasing α .	8
b)	Suppose that α' exists and it is a bounded Riemann integrable function on	
	[a, b]. Then show that given a bounded function 'f ' on [a, b]. We have,	

$$f \in R_{\alpha}[a, b]$$
 if and only if $f\alpha' \in R[a, b]$, in either case $\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$. 8

4. a) If $f \in R_{\alpha}[a,b]$ with $m \le f \le M$, then show that $\int_{a}^{b} f d\alpha = C[\alpha(b) - \alpha(a)]$ for some 'C' between m and M and also if f is continuous then show that $C = f(x_0)$ for some x_0 .

b) Prove that if $S_n \to S$, then $\sigma_n \to S$.

M.A./M.Sc. (Sem. - II) (2004 Pattern) Examination, 2010 **MATHEMATICS** MT 601 : Real Analysis – II (Old)

Time

1.

2.

3.

8

8

[3721] - 201

[3721] - 201

8

2

2

8

8

- i) $0 \le m^*(E) \le \infty$, for any E.
- ii) If $E \subset F$, then $m^*(E) \le m^*(F)$.

5. a) Define Lebesgue outer measure and prove the following :

b) Prove that
$$m^* \left(\bigcup_{n=1}^{\infty} E_n \right) \le \sum_{n=1}^{\infty} m^* (E_n)$$
 for any sequence (E_n) of subsets of IR. 8

- 6. a) State and prove Lebesgue dominated convergence theorem. 8
 - b) Let $\{E_n\}$ be the sequence of measurable sets. Then prove that

i) If
$$E_n \subset E_{n+1}$$
 for each n, then $m\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} m(E_n)$. 6

- c) State Vitali's covering theorem.
 7. a) Let E ⊂ IR, then prove that E is measurable iff
- $m^{*}(A) = m^{*}(A \cap E) + m^{*}(A \cap E^{C})$ for every subset A of \mathbb{R} . 8
 - b) Let $\{f_n\}$ be a sequence (finite or infinite) of measurable functions, then prove that $\sup_n f_n$ and $\inf_n f_n$ are measurable functions. 6
 - c) State Egorov's theorem.
- 8. a) State and prove monotone convergence theorem.
 - b) Give an example of a improper Riemann integrable function which is not Lebesgue integrable.

M.A./M.Sc. Examination, 2010 MATHEMATICS (2008 Pattern and 2004 Pattern MT – 604 : Complex Analysis (New and Old)

Time: 3 Hours

Max. Marks: 80

1. a) If z and z' are points in the extended complex plane \mathbb{C}_{∞} and d(z, z') denote the distance between z and z' then derive the expression

$$d(z, z') = \frac{2|z - z'|}{\left[(1 + |z|^2)(1 + |z'|^2)\right]^{\frac{1}{2}}}$$

- b) i) For the point z = 3 + 2i, give the corresponding point of the unit sphere S in \mathbb{R}^3 .
 - ii) Let z and z' be points in S (unit sphere in \mathbb{R}^3) corresponding to z and z' respectively. Let W be the point on S corresponding to z + z'. Find the coordinates of W in terms of the coordinates of z and z'.

2. a) For a given power series
$$\sum_{n=0}^{\infty} a_n z^n$$
 define the number $0 \le R \le \infty$, by

$$\frac{1}{R} = \lim \sup |a_n|^{\frac{1}{n}}$$
. Prove that

- i) If |z| < R, the series converges absolutely
- ii) If |z| > R, the series diverges.
- iii) If 0 < r < R then the series converges uniformly on { $z : |z| \le r$ }

b) Find the radius of convergence for each of the following power series

i)
$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 ii) $\sum_{n=0}^{\infty} a^n z^n$, $a \in \mathbb{C}$ P.T.O.

8

8

8

[3721] - 204

- b) i) Show that for any z, $(\cos z)' = -\sin z$.
 - ii) Describe the set $\{z : e^z = -1\}$.
- 4. a) If z_2 , z_3 , z_4 are distinct points in \mathbb{C}_{∞} and T is any Möbius transformation then prove that $(z_1, z_2, z_3, z_4) = (Tz_1, Tz_2, Tz_3, Tz_4)$ for any point z_1 . Hence prove that a Möbius transformation takes circles onto circles.
 - b) i) Find the fixed points of a dilation and the inversion on \mathbb{C}_{∞} .
 - ii) Evaluate the cross ratio $(7 + i, 1, 0, \infty)$.
- 5. a) Prove that if a function f is analytic in the open sphere B (a ; R) then

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \text{ for } |z-a| < R \text{ where } a_n = \frac{1}{n!} f^{(n)}(a) \text{ and this series has}$$

radius of convergence $\ge R$.

b) Evaluate the following integrals

i)
$$\int_{\gamma} \frac{\sin z}{z^3} dz, \ \gamma(t) = e^{it}, \ 0 \le t \le 2\pi;$$
 8

- ii) $\int_{\gamma} \frac{dz}{\left(z \frac{1}{2}\right)^n}$ where n is a positive integer and $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$.
- 6. a) Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. Prove that if γ is a closed rectifiable curve in G such that $n(\gamma; w) = 0$ for all w in \mathbb{C} – G then for a in G – { γ }

$$n(\gamma; a) f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz$$

b) i) Let γ be a closed rectifiable curve \mathbb{C} and $a \notin \{\gamma\}$. Show that for $n \ge 2 \int_{\gamma} (z-a)^{-n} dz = 0$

-2-

8

8

8

8

ii) Let p(z) be a polynomial of degree n and let R > 0 be sufficiently large so that p never vanishes in $\{z : |z| > R\}$. If $\gamma(t) = Re^{it}$, $0 \le t \le 2\pi$, show that

$$\int_{\gamma} \frac{p'(z)}{p(z)} dz = 2\pi \text{ in } \cdot$$
8

7. a) Let f be analytic in the region G except for the isolated singularities $a_1, a_2, ..., a_n$. Prove that if γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{n} n(\gamma; a_k) \operatorname{Res} (f; a_k)$$

- b) Let $f(z) = \frac{1}{z(z-1)(z-2)}$; give the Laurent expansion of f(z) in the annuli ann (0; 1, 2).
- c) Show that for a > 1,

$$\int_{0}^{\pi} \frac{\mathrm{d}\theta}{a + \cos\theta} = \frac{\pi}{\sqrt{a^2 - 1}}.$$
 5

- 8. a) Let G be a region in \mathbb{C} and f an analytic function on G. Prove that if there is a constant M such that $\lim_{z \to a} \sup |f(z)| \le M$ for all a in $\partial_{\infty}G$ then $|f(z)| \le M$ for all z in G.
 - b) Let G be a bounded region and suppose f is continuous on \overline{G} and analytic on G. Show that if there is a constant $c \ge 0$ such that |f(z)| = c for all z on the boundary of G then either f is a constant function or f has a zero in G. 5
 - c) Does there exist an analytic function $f: D \to D$ with $f\left(\frac{1}{2}\right) = \frac{3}{4}$ and

$$f'\left(\frac{1}{2}\right) = \frac{2}{3}? \text{ Justify your answer } \left(D = \left\{z : |z| < 1\right\}\right).$$

B/I/10/620

5

6

-3-

M.A./M.Sc. (Semester – III) Examination, 2010 MATHEMATICS (2008 Pattern) MT-701 : Functional Analysis (New)

Time : 3 Hours

Instructions : i) Attempt **any five** questions. ii) Figures to the **right** indicate **full** marks.

a) Let M be a closed linear subspace of a normed linear space N. The norm of a coset x + M in the quotient space N/M is defined by

 $|| x + M || = \inf \{ || x + m || : m \in M \}.$

Prove that N/M is a normed linear space.

- b) Let $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ be an n-tuple of scalars. If $\|\mathbf{x}\|_p = \left(\sum |\mathbf{x}_i|^p\right)^{\frac{1}{p}}$, and $\|\mathbf{x}\|_{\infty} = \max \{ |\mathbf{x}_i|, ..., |\mathbf{x}_n| \}$, then prove that $\|\mathbf{x}\|_{\infty} = \lim \|\mathbf{x}\|_p$, as $p \to \infty$.
- c) If M is a closed linear subspace of a normed linear space N, and if T is the natural mapping of N onto N/M defined by T (x) = x + M, show that T is a continuous linear transformation for which $||T|| \le 1$.
- 2. a) Let M be a linear subspace of a normed linear space N, and let f be a functional defined on M. If x₀ is a vector not in M, and if M₀ = M + {x₀} is the linear subspace spanned by M and x₀, then prove that f can be extended to a functional f₀ defined on M₀ such that ||f₀|| = ||f||.
 8
 - b) Let M be a linear subspace of a normed linear space N, and x₀ be a vector not in M. If d is the distance from x₀ to M, then show that there exists a

functional f_0 in N* such that $f_0(M) = 0$, $f_0(x_0) = 1$, and $||f_0|| = \frac{1}{d}$.

c) True/False ? Justify your answer.

If N is complete, then N is reflexive.

Р.Т.О.

Max. Marks: 80

6

4

6

2

[3721]	-2- 301 -2-	
	State and prove the closed graph theorem. With usual notations prove that $x \to F_x$ is a norm preserving mapping of N into N ^{**} .	8 8
	Show that the parallelogram law is not true in l_1^n (n > 1).	4
	Let M be a proper closed linear subspace of a Hilbert space H. Prove that there exists a non-zero vector z_0 in H such that $z_0 \perp M$.	6
c)	Show that $\left\{\frac{e^{mx}}{\sqrt{2\pi}}\right\}$ is an orthonormal set in L ₂ [0, 2 π].	6
5. a)	Prove that an operator T on a Hilbert space H is normal if and only if $ T^* x = Tx $ for every $x \in H$.	6
b)	Show that an orthonormal set in a Hilbert space is linearly independent.	4
c)	Let P be a projection on a Hilbert space H with range M and null space N. Prove that $M \perp N$ if and only if P is self-adjoint.	6
6. a)	If T is an operator on a Hilbert space H, then prove that the following conditions are all equivalent to one another. : i) $T^*T = I$;	
	ii) $(Tx, Ty) = (x, y)$ for all x and y; iii) $ Tx = x $ for all x.	6
b)	Let N_1 and N_2 be normal operators on a Hilbert space H with the property that either commutes with the adjoint of the other. Prove that $N_1 + N_2$ and $N_1 N_2$ are normal.	6
c)	Prove that the adjoint operation $T \rightarrow T^*$ on B(H) has the following properties :	
	i) $(\alpha T)^* = \overline{\alpha} T^*;$	
		4

ii) $(T_1T_2)^* = T_2^*T_1^*$.

7. a) With usual notations, prove that (l_pⁿ)^{*} = l_qⁿ. 6 b) Show that a projection on a Hilbert space H satisfies O ≤ P ≤ I. Under what conditions will P = O and P = I ? c) Let A and A ⊂ B be nonempty subsets of a Hilbert space H. Show that A ⊂ A^{⊥⊥} and B[⊥] ⊂ A[⊥]. 8. a) i) State spectral theorem. ii) If T is a normal operator on a Hilbert space H, then prove that M'_is span H. 8 b) Let T be an operator on H, and prove the following statements :

-3-

[3721] - 301

- i) T is singular if and only if $0 \in \sigma(T)$;
- ii) If T is non-singular, then $\lambda \in \sigma(T)$ if and only if $\lambda^{-1} \in \sigma(T^{-1})$. 8

M.A./M.Sc. (Semester – III) Examination, 2010 MATHEMATICS (2004 Pattern) MT-701 : General Topology (Old)

-4-

Time : 3 Hours

N.B. : 1) Answer **any five** questions. 2) Figures to the **right** indicate marks.

a) Define a basis for a topology on a set X. Show that the topology generated by a basis equals the collection of all unions of elements of the basis.

- b) Let X be a set and $\tau = \{u \subseteq x \mid x u \text{ is a finite or all of } x\}$. Then show that τ is a topology on X.
- c) If X = { a, b, c}, let $\tau_1 = \{\phi, x, \{a\}, \{a, b\}\}$ and $\tau_2 = \{\phi, x, \{a\}, \{b, c\}\}$. Find the smallest topology containing τ_1 and τ_2 , and the largest topology contained in τ_1 and τ_2 .
- 2. a) Let A be a subset of the topological space X ; let A' be the set of all limit points of A. Then prove that $A = A \cup A'$.
 - b) Is the real line IR a Hausdorff space ? Justify.
 - c) Find the closures of the following subsets of the real line IR ?

i)
$$\mathbf{A} = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}_{+} \right\}$$

- ii) The set Q of rational numbers.
- 3. a) Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$. Prove that f is continuous if and only if the functions $f_1 : A \to X$ and $f_2 = A \to Y$ are continuous.
 - b) Show that the mapping $f : IR \to IR$ given by f(x) = 3x + 1 is a homeomorphism.
 - c) Suppose that f : X → Y is continuous. If x is a limit point of the subset A of X, is it necessarily true that f (x) is a limit point of f (A)?
 5

Max. Marks: 80

5

5

5

6

5

4.	a)	Prove that a finite Cartesian product of connected spaces is connected.	6
	b)	Prove that the image of a connected space under a continuous map is connected.	5
	c)	Show that the set \mathbf{R}^{w} is not collected in the box topology.	5
5.	a)	Let Y be a subspace of X. Prove that Y is compact if and only if every covering of Y by sets open in X contains a finite sub collection covering Y.	6
	b)	Show that the real line \mathbb{R} is not compact.	5
	c)	Show that if $f: X \to Y$ is continuous, where X is compact and Y is Hausdorff, then f is closed map.	5
6.	a)	Prove that if a topological space X has a countable basis then it is Lindelöf and separable.	6
	b)	Prove that the space \mathbb{R}_{e} is first countable but not second countable.	5
	c)	Show by an example that the product of two Lindelöf spaces need not be Lindelöf.	5
7.		Prove that a subspace of a Hausdorff space is Hausdorff and a product of Hausdorff space is Hausdorff.i) Show that a closed subspace of a normal space is normal.	8
	0)	ii) Show that if πX_{α} is regular then so is X_{α} .	8
8.	a)	Prove that every regular space X with a countable basis is metrizable.	10
		∞ 	20
	D)	State the Tychonoff Theorem. Hence show that the product $\prod_{n=1} [-n, n]$ is compact in the product topology.	6

-5-

B/I/10/325

M.A./M.Sc. (Semester – III) Examination, 2010 MATHEMATICS (2008 Pattern) MT – 702 : Ring Theory (New)

Time: 3 Hours

N.B.: 1) Attempt any five questions.2) Figures to the right indicate full marks.

- 1. a) If R is a ring with identity and S is a subring of R containing the identity, then prove that if u is a unit in S then u is a unit in R, show by example that the converse is false.
 - b) Define the ring of integers in the quadratic field $Q(\sqrt{D})$, D is square free integer. Prove that the element α in ring of integers in the quadratic field is a unit iff norm of $\alpha = \pm 1$.
 - c) i) Prove that the only Boolean ring that is an integral domain is $\frac{z}{2z}$.
 - ii) If R is an integral domain and $x^2 = 1$ for some $x \in R$ then prove that $x = \pm 1$. 2
- 2. a) If R is an integral domain and if $p(x), q(x) \in R[x]$ then prove that
 - i) degree p(x) q(x) = degree p(x) + degree q(x).
 - ii) R [x] is an integral domain.

b) Find all ring homomorphisms from z to $\frac{z}{10 z}$. Describe the kernel and image in each case.

- c) If $\phi: R \to S$ is a ring homomorphism and if x is nilpotent element of R then prove that $\phi(x)$ is a nilpotent of S.
- 3. a) Prove that every ideal in a Euclidean domain is principal.
 - b) If R is a quadratic integar ring $z[\sqrt{-5}]$ and $I = (3, 2 + \sqrt{-5})$, is an ideal then show that I is not principal ideal. Is R a Euclidean domain ?
 - c) If R is a Euclidean domain and if a, b, $c \in R$ ($a \neq 0, b \neq 0$) a divides be then show that $\frac{a}{(a,b)}$ divides c. 5 P.T.O.

[3721] - 302

Max. Marks : 80

6

5

6

3

6

4

5

[3721] - 302

-2-

4.		Prove that every non-zero prime ideal in a principal ideal domain is a maximal ideal. Is Z[x] a principal ideal domain ? Prove that a quotient of PID, in general, is not a PID; but quotient of by a prime ideal, ideal is PID.	6 6
	c)	Prove that the quotient ring $\frac{z[i]}{(1+i)}$ is a field of order 2. Is it a U.F.D. ?	4
5.	a)	Prove that a polynomial of degree two or three over a field F is reducible iff it has a root in F.	5
	b)	If I is a proper ideal in the integral domain R and $p(x)$ is a non constant monic	
		polynomial in R [x]. If the image of p(x) in $\left(\frac{R}{I}\right)[x]$ cannot be factored in	
		$\frac{R}{I}$ [x] into two polynomials of smaller degree then prove that p(x) is irreducible	
		in R[x].	6
	c)	Construct a field with nine elements.	5
6.	a)	Show that the following are equivalent.	6
		i) R is Noetherian ring.ii) Every non-empty set of ideals of R contains a maximal element under inclusion.iii) Every ideal of R is finitely generated.	
	b)	If the polynomial ring R[x] is Noetherian then prove that R is Noetherian.	4
	c)	Show that the ring of continuous real valued functions on $[0, 1]$ is not a	
		Noetherian ring.	6
7.	a)	If I is an ideal in the commutative ring R then prove that rad I is an ideal	
		containing I and $\frac{\text{rad I}}{\text{I}}$ is the nilradical of $\frac{R}{I}$.	8
	b)	Prove that in the ring of integers z, the ideal (a) is a radical ideal iff a is squarfree or zero.	4
	c)	Define affine algebraic set show that one point subsets of A^n for any n, affine n-space over the field k, are affine algebraic.	4
8.		If $J = J_{ac}R = Jacobson radical of R$ then prove that an element $x \in J$ iff $1 - rx$ is a unit for all $r \in R$. Prove that Artirian integral domain is a field.	6 6
	c)	Prove that every PID is a Dedekind domain.	4

M.A./M.Sc. (Semester – III) Examination, 2010 MATHEMATICS (2004 Pattern) MT – 702 : Mechanics (Old)

Time: 3 Hours

N.B.: i) Attempt any five questions. ii) Figures to the right indicate full marks.

- 1. a) Derive Lagrange's equations of motion using D'Alembert's principle.
 - b) Write down the equations of constraints in cartesian co-ordinates for a small rigid rod of length *l* is allowed to move in any manner inside a balloon of fixed radius R > *l*, the end parts of the rod always touching the bolloon's surface.
 - c) Find the equation of motion of a solid sphere rollig down on an incline using Lagrange multipliers for the rolling constraints.
- 2. a) Explain the following terms :
 - i) Degree of freedom
 - ii) Generalized momentum
 - iii) Virtual work
 - iv) Cyclic co-ordinates.
 - b) Show that the expression for the kinetic energy on the quadratic function of generalized velocities.
 - c) If L is a Lagrangian for a system of n degree of freedom satisfying the Lagrange's equations, then show that $L^1 = L + \frac{dF}{dt}(a_1...a_n, t)$ also satisfies the Lagrange's equation, where F is any arbitrary, but differential function of its arguments.

Max. Marks: 80

6

5

6

5

[3721]	- 302 -4-		
3. a)	Set up the Lagrangian for two bodies n center of mass and show that it can be problem.	e	
b)	Prove that angular momentum of a par constant.	ticle in central force field	d remains 5
c)	Find the central force under the action c r = a (1 + cos θ).	of which a particle will fo	ollow 5
4. a)	Explain the following terms :		
	i) Lagendre's Dual transformation		
	ii) Passive variables.		5
b)	Show that the Hamilton's principle		
	$\delta \int_{\infty}^{t} L dt = 0$		
	also holds for the non-conservative sys	stem.	6
c)	A particle moves on a smooth surface up to find the equation of motion.	nder gravity. Use Hamilto	on's principle 5
5. a)	Deduce Newton's second law of motio	n from Hamilton's princi	iple. 5
b)	Prove that a co-ordinate which is cyclic Hamiltonian.	in the Lagrangian is also	o cyclic in the 5

c) Find the Routhian for the Lagrangian

$$L = \frac{1}{2}I_3(\dot{\psi} + \dot{\phi}\cos\theta)^2 + \frac{1}{2}I_1(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta) - \text{mgl}\cos\theta$$

Where I_1 , I_3 , m, g, l are constants.

6

-5-

6.	a)	Explain the method to obtain the required canonical transform when generating function is given.	6
	b)	Show that the reflection about the $x_2 x_3$ plane passing through the origin is canonical transform. Obtain its generating function.	5
	c)	Define Poission's bracket and show that it is invariant under canonical transformation.	5
7.	a)	State and prove Jacobi-Poisson theorem on Poisson bracket.	5
	b)	Evaluate $[L_1, A_{jk}]$ and $[A_{jk}, A_{il}]$ where $L = r \times p$ and $Aij = x_i x_j + p_i p_j$.	6
	c)	Calculate the eigenvalues and eigen vector of the rotation matrix,	
		$\mathbf{A} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$	5
8.	a)	Prove the Jacobi's theorem for the time independent Hamilton – Jacobi theory.	5
	b)	Explain the method to find the complete integral of the Hamilton-Jacobi equation.	5
	c)	Consider the motion of a body of unit mass on the constrained path	
		y = coshx under a potential $v = \frac{x^2}{2}$. Solve Hamilton's equation of motion	
		directly as well as by using the Hamilton–Jacobi method.	6

B/I/10/330

M.A./M.Sc. (Semester – III) Examination, 2010 MATHEMATICS MT-704 : Measure and Integration (New) (2008 Pattern)

Time: 3 Hours

Max. Marks: 80

6

5

- **N.B.**: *i)* Attempt **any five** questions.
 - ii) Figures to the **right** indicate **full** marks.
 - iii) B denotes a σ -algebra of subsets of X and μ denotes a measure on (X, B).

1. A) Suppose that for each α in a dense set D of real numbers there is assigned a set $B_{\alpha} \in B$ such that $\mu(B_{\alpha} \sim B_{\beta}) = 0$ for $\alpha < \beta$. Prove that there is a measurable function f such that $f \leq \alpha$ a.e. on B_{α} and $f \geq \alpha$ a.e. on $X \sim B_{\alpha}$.

B) If
$$E_1 \in B$$
, $\mu E_1 < \infty$ and $E_i \supset E_{i+1}$, then prove that $\mu \left(\bigcap_{i=1}^{\infty} E_i \right) = \lim_{n \to \infty} \mu E_n$. 5

C) Let $\langle f_n \rangle$ be a sequence of measurable functions that converges to a function f except at the points of set E of measure zero. Show that if μ is complete, then f is a measurable function.

2. A) Let $\left< f_n \right>$ be a sequence of non-negative measurable functions that converge

almost everywhere on a set E to a function f. Prove that $\int_{E} f \leq \underline{\lim} \int_{E} f_{n}$. 8

B) If f and g are non-negative measurable functions and a and b are non-negative constants, then show that

$$\int af + bg = a \int f + b \int g \,. \tag{4}$$

C) Give an example of a decreasing sequence $\langle \mu_n \rangle$ of measures on a measurable space such that the set function μ defined by $\mu E = \lim \mu_n E$ is not a measure. 4

P.T.O.

[3721] - 304

[3721] - 304

3. A) Let v be a signed measure on the measurable space (X, B). Prove that there is a positive set A and a negative set B such that $X = A \cup B$ and $A \cap B = \phi$. 6 B) Show that if measures v_1 and v_2 are singular with respect to μ , then so is 5 $c_1v_1 + c_2v_2$. C) Prove that every measurable subset of a positive set is itself positive. Further, prove that union of a countable collection of positive sets is positive. 5 4. A) Let (X, B, μ) be a σ -finite measure space and ν a σ -finite measure defined on B. Then prove that we can find a measure v_0 , singular with respect to μ , and a measure v_1 , absolutely continuous with respect to μ , such that 6 $\mathbf{v} = \mathbf{v}_0 + \mathbf{v}_1.$ B) If $A \in a$ and if $\langle A_i \rangle$ is any sequence of sets in a such that $A \subseteq \bigcup_{i=1}^{n} A_i$, prove that $\mu A \leq \sum_{i=1}^{\infty} \mu A_i$. 5 C) Let (X, B, μ) be a finite measure space and g an integrable function such that for some constant M, $\left|\int g\phi \, d\mu\right| \leq M \|\phi\|_{\perp}$ for all simple functions ϕ . Prove that $g \in L^{\infty}$. 5 5. A) Let F be a bounded linear functional on $L^{P}(\mu)$ with 1 . Show that thereis a unique element $g \in L^q$ such that $F(f) = \int fg d\mu$ and $||F|| = ||g||_{q}$, where $\frac{1}{p} + \frac{1}{q} = \infty$. 6 B) Let X be a set consisting of two points. Construct an outer measure on X which is not regular. 5 C) If μ is a finite Baire measure on the real line, then show that its cumulative distribution function F is a monotone increasing bounded function which is continuous on the right. Further, show that $\lim_{x\to\infty} F(x) = 0$. 5

- 6. A) Let μ be a measure on a σ -algebra a of subsets of X, and let *M* be a collection of subsets of X which is closed under countable unions and which has the property that for each $A \in a$ with $A \subset M \in M$, we have $\mu A = 0$. Prove that there is an extension $\overline{\mu}$ to μ to the smallest σ -algebra *B* containing a and *M* such that $\overline{\mu}M = 0$ for each $M \in M$.
 - B) Let B be a μ^* measurable set with $\mu^* B < \infty$. Prove that $\mu_* B = \mu^* B$.
 - C) Let A_i be a disjoint sequence of sets in a Prove that

$$\mu_* \left(E \cap \bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mu_* (E \cap A_i).$$
5

- A) Let F be a closed subset of X. Prove that F is a locally compact Hausdorff space, and the Baire sets of F are those sets of the form B∩F, where B is a Baire set in X.
 - B) Let μ be a finite measure defined on a σ -algebra M which contains all the Baire sets of a locally compact space X. Prove that μ is regular if it is inner regular.
 - C) Show that the intersection of two σ -compact sets is σ -compact.
- 8. A) Let μ be a measure defined on a σ-algebra *M* containing the Baire sets. Assume either that μ is quasi regular or that μ is inner regular. If μ is outer regular for each compact set or if μ is inner regular for each bounded open set, then prove that μ is regular for each σ-bounded set in *M*.
 8
 - B) Let μ be a Baire measure on X. Prove that there are complete saturated measures $\overline{\mu}$ and $\underline{\mu}$ defined on a σ -algebra containing the Borel sets with $\overline{\mu}$ quasi regular, $\underline{\mu}$ inner regular, and $\overline{\mu}E = \underline{\mu}E = \mu E$ for each σ -bounded Baire set. 8

6

5

6

5

M.A./M.Sc. (Semester – III) Examination, 2010 **MATHEMATICS** MT-704 : Mathematical Methods – I (Old) (2004 Pattern)

Time : 3 Hours

N.B.: 1) Attempt any five questions. 2) Figures to the **right** indicate **full** marks.

- 1. a) Define conditionally convergent series and give an example of the same. 4
 - b) Discuss convergence of the following series.

i)
$$\sum_{n=1}^{\infty} n^4 e^{-n^2}$$

ii) $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$

c) Find first four terms of the Taylor series expansion of the function $\tan^{-1} x$ around $x = 0$.	4
d) Explain the root test for convergence of a series.	2

2. a) If
$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$
, show that $2 < e < 3$.

- b) Show that the alternating series $a_1 a_2 + a_3 a_4 \dots$, where $0 \le a_{n+1} \le a_n$ and $\lim_{n\to\infty} a_n = 0, \text{ converges.}$
- c) State the Dirichlet conditions for convergence of Fourier series.
- d) Expand $f(x) = x^2$, $-\pi < x < \pi$ as Fourier series, where f is periodic with period π .

Max. Marks: 80

-4-

5

2

5

3. a) Find the amplitude, period, frequency, wave velocity and wave length of the wave motion $y(x) = \sin \frac{5\pi x}{6}$.

-5-

b) Define Legendre form of elliptic integrals of the first and second kind.

c) Show that, if 0 < k < 1, the elliptic integral

$$K(k) = \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - k^{2} \sin^{2} \theta}}$$
$$= \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^{2} k^{2} + \left(\frac{1.3}{2.4}\right)^{2} k^{4} + \left(\frac{1.3.5}{2.4.6}\right)^{2} k^{6} + \dots \right].$$

- d) Find the length of the arc of the curve $y = \sin x$, $0 \le x \le \pi$, in terms of elliptic integrals. 4
- 4. a) Define $\Gamma(m)$ and $\beta(m, n)$. Further show that $B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$, m, n > 0. 6

b) Evaluate
$$\int_{0}^{\pi/2} \sin^{4}\theta \cos^{5}\theta d\theta.$$
 4

c) Prove the duplication formula

$$2^{2P-1} \Gamma(P) \Gamma\left(P + \frac{1}{2}\right) = \sqrt{\pi} \Gamma(2P).$$
6

5. a) Show that

$$\int_{-1}^{1} P_n(x) P_m(x) dx = 0 \text{ if } m \neq n, \text{ where } P_n \text{ denotes Legendre polynomial.}$$

- b) State the Rodrigues formula for Legendre polynomials. Evaluate $P_4(x)$ using the same.
- c) Show that for p = n(n + 1), $n \in N$, Legendre equation $(1 - x^2)y'' - 2xy' + py = 0$, admits a polynomial solution of degree n. 8

5

[3721] - 304

- 6. a) Find the Laplace transform of :
 - i) $L[e^{4t} \sinh 3t](s)$

ii) $L\left[\frac{1-\cos t}{t}\right]$

b) Find inverse Laplace transform

$$L^{-1}\left[\frac{s+2}{s^{2}-4s+13}\right](t).$$
 4

- c) Solve the following differential equation using the Laplace transform. $y'' + 4y' + 8y = \cos 2t$, y(0) = 2, y'(0) = 1. 6
- 7. a) State the Rodrigue's formula for Hermite polynomials and evaluate $H_2(x)$, $H_3(x)$.
 - b) Solve the Bessel equation of order zero :

 $x^{2}y'' + xy' + x^{2}y = 0$, around the regular singular point 0 and derive the expression for J₀.

c) Show that
$$\frac{d}{dx}J_0(x) = -J_1(x)$$
. 4

8. a) Define Fourier transform and prove that

i)
$$F\left[e^{iat} f(t)\right](s) = \hat{f}(s+a)$$

ii) $F[f(t-a)](s) = e^{ias} \hat{f}(s).$ 6

-6-

6

4

b) Find Fourier transforms of

i)
$$f(t) = e^{-t^2}$$

ii) $f(t) = e^{-|t|}$. 6

c) State and prove Fourier convolution theorem.

B/I/10/290

M.A./M.Sc. (Semester – III) Examination, 2010 MATHEMATICS (2008 Pattern) MT. 705 : Graph Theory (New)

Time : 3 Hours

N.B.: 1) Answer any five questions.2) Figures to the right indicate full marks.

1. a)	Prove that if G is a self-complementary graph with n vertices, then n or $n-1$	
	is divisible by 4.	6

- b) Prove that an edge is a cut edge if and only if it belongs to no cycle. 6
- c) Prove that every set of six people contains at least three mutual acquaintances or three mutual strangers.
- 2. a) Prove that if G is a simple n-vertex graph with $\delta(G) \ge \frac{(n-1)}{2}$, then G is connected.
 - b) Prove that every simple graph with at least two vertices has at least two vertices of same degree.
 - c) Prove that every Tournament has a king.
- 3. a) Prove that for an n-vertex graph G (with $n \ge 1$), the following are equivalent : 6
 - i) G is connected and has no cycles
 - ii) G is connected and has n 1 edges
 - iii) G has n 1 edges and no cycles.
 - b) Determine whether the sequence (5 5 5 4 2 1 1 1) is graphic ? Provide a construction or a proof of impossibility.6
 - c) Using matrix tree theorem, count the spanning trees in the graph G. 4

[3721] - 305

Max. Marks : 80

4

6

[3721] - 305

-2-

- 4. a) Prove that in a connected weighted graph G, Kruskal's algorithm constructs a minimum weight spanning tree.
 - b) There are six cities in a network. The travel time for traveling directly from i to j is the entry a_{ij} , in the matrix below. Also, $a_{ij} = \infty$ indicates that there is no direct route. Determine the least travel time and quickest route from i to j for each pair i, j.

 $\begin{pmatrix} 0 & 5 & \infty & 8 & 5 & 2 \\ 5 & 0 & 3 & 4 & \infty & 5 \\ \infty & 3 & 0 & 2 & 4 & \infty \\ 8 & 4 & 2 & 0 & 2 & 5 \\ 5 & \infty & 4 & 2 & 0 & 11 \\ 2 & 5 & \infty & 5 & 11 & 0 \end{pmatrix}$

5. a) Prove that for k > 0, every k-regular bipartite graph has a perfect matching. 6

b) Define :

- i) Maximal matching in a graph
- ii) Maximum matching in a graph.

Find the smallest graph having a maximal matching that is not a maximum matching.

- c) Prove or disprove = Every tree has at most one perfect matching.
- 6. a) Prove that if G is a graph without isolated vertices then $\alpha'(G) + \beta'(G) = n(G)$. 8
 - b) i) Find a maximum matching in the following graph.

ii) Let T be a tree with n vertices, and let k be the maximum size of an independent set in T. Determine $\alpha'(T)$ in terms of n and k.	8
7. a) Prove that if G is a 3 – regular graph then $k(G) = k'(G)$.	8
b) i) Determine k (G), k'(G) and δ (G) for the graph G where G is a complete graph on five vertices.	
ii) Show that every graph with connectivity 4 is 2-connected.	8
8. a) Prove that a graph is 2-connected if and only if it has an ear decomposition.	8
b) i) State Menger's theorem. Illustrate with one example.ii) State Max-flow Min-cut theorem. Illustrate with one example.	8

8

8

6

M.A./M.Sc. (Semester – III) Examination, 2010 MATHEMATICS (2004 Pattern) MT. 705 : Rings and Modules (Old)

Time : 3 Hours

Max.	Marks	:	80
man.	mains	٠	00

6

5

5

6

4

4

N.B.: 1) Attempt any five questions. 2) Figures to the right indicate full marks.
If R is commutative ring with 1, then prove that $A \in M_n(R)$ is a unit iff its determinant det (A) is a unit in R.
If R is a ring with 1 and $x \in R$ is nilpotent then show that $1 + x$ is a unit in R. Can one replace 'nilpotent' by "zero divisor".

- c) Is the following statement true ? Justify ? In the ring Z_{2k} , \overline{k} is an idempotent if K is odd.
- 2. a) If R is a ring with 1 and I is an ideal in R such that I≠R then prove that there is a maximal ideal M of the same kind as I such that I⊆M.
 10
 - b) Show that the above result is not true if R has no unity even if R is commutative.
- 3. a) Prove that the $\frac{Z}{nZ}$ is a field iff $\frac{z}{nz}$ is an integral domain or iff n is a prime. 8
 - b) If R is a commutative ring with unity and each ideal in R is prime then prove that R is a field.
 - c) If the intersection of two prime ideals is a prime ideal then prove that one of them is contained in the other.
- 4. a) If for $n \ge 2$, the ring $\frac{z}{nz}$ has no non-trivial nilpotent elements then prove that n is square tree. 6
 - b) Give an example of a ring in which an ideal of an ideal is not an ideal. 5
 - c) Show that in any Boolean ring an ideal is maximal iff it is a prime ideal. **5**

-3-

[3721] – 305

5. a) If $I \subseteq J$ are both 2-sided ideals in a ring R then prove that $\frac{R/I}{J/I} \simeq R/J$.	8
b) Give examples of homomorphisms of rings $f : R \to S$ and $g : S \to T$ such that $g_0 f$ is an epimorphism but f is not.	h 4
c) Prove that $\operatorname{Hom}_{\operatorname{rings}}(z_{n,z}) = (0) \forall n \in \mathbb{N}$.	4
6. a) Prove that a prime is an irreducible but not conversely.	8
b) Prove that every Euclidean domain is a PID.	4
c) Show that in the ring Z [i] the elements 3 + 4 i and 4 – 3 i are associates whereas 11+7i is co-prime to 18 – i.	4
7. a) If the ring R is an FD in which every irreducible element is a prime then prove that R is UFD.	5
b) If R is UFD then prove that every irreducible polynomial in R [X] is a prime.	5
c) i) Show by an example that a subring or a quotient of a UFD need not be a UFD.	a 3
ii) Show by Eisenstein's criterion $x^2 + 1$ is irreducible over IR.	3
8. a) If M and N are submodules of a module P over R. Then prove that $M \cap N = (0) \Leftrightarrow$ every element $S \in M + N$ can be uniquely written as $s = x + y$.	
with $x \in M$ and $y \in N$.	6
 b) Show that every finitely generated R-module M can be considered as a qualient of Rⁿ for some n. 	5
c) Define Torsion module and torsion free module and give example for each.	. 5
For any module M over a commutative integral domain R, prove that the	
quotient M_{M_t} is torsion free.	
$(M_t = set of all torsion elements of M).$	

-4-

M.A./M.Sc. Examination, 2010 MATHEMATICS (2005 Pattern) MT-707 : Graph Theory (Old)

Time: 3 Hours

Max. Marks: 80

		N.B. : 1) Attempt any five questions.	
		2) Figures to the right indicate full marks.	
1.	a)	List all non-isomorphic simple directed graphs with three vertices.	6
	b)	Prove that if G is bipartite, then every circuit in G has even length.	6
	c)	If all vertices of a graph G have degree P, where P is an odd number, show that the number of edges in G is a multiple of P.	4
2.	a)	If v and e denote the number of vertices and edges respectively in a connected planar graph G, with $e > 1$, then prove that $e \le 3v - 6$. Hence, prove that K_5 is nonplanar.	8
	b)	If a connected planar graph with n vertices, all of degree 3 has 7 regions, determine n.	4
	c)	i) Find a planar graph that is isomorphic to its own dual.	4
		ii) For what values of r and s, is the complete bipartite graph $K_{r,s}$ planar ?	
3.	a)	Prove that an undirected multigraph has an Euler Cycle if and only if it is connected and has all vertices of even degree.	8
	b)	Find the chromatic number of Petersen's graph. Give justification.	4

P.T.O.

[3721]] - 37 -2-	
c)	i) For which values of n, does K _n , the complete graph on n vertice Euler cycle ?	ices have an 4
	ii) Prove or disprove: A graph with an Euler cycle have a bridge.	
4. a)	Prove that every tournament has a Hamilton path.	6
b)	Prove that every planar graph can be 5-coloured.	6
c)	Find the chromatic polynomial of the graph C_4 , of a circuit of length C_4 , of a circuit of	ngth 4. 4
5. a)	Prove that there are n^{n-2} different undirected trees on n lables.	6
b)	Show that any tree with more than one vertex has at least two verticone.	ces of degree 6
c)	Show that the chromatic polynomial of an n vertex tree in $K(K - K)$	4 1) ⁿ⁻¹ . 4
6. a)	Prove that Prim's algorithm yields a minimal spanning tree.	8
b)	Find all spanning trees (upto isomorphism) in the graph G.	4

- c) If 56 people sign up for a tennis tournament, how many matches will be played in the tournament ?
- 7. a) Prove that for any a z flow f, and any a z cut (P, \overline{P}) , in a network N, $|f| \le K(P, \overline{P})$.

b) Determine the shortest path from vertex a to f in the following graph, using Dijkstra's algorithm.

- 8. a) State and prove Hall's marriage theorem.
 - b) Find a maximal flow from a to z in the following Network.

B/I/10/190

8

-3-

8

M.A./M.Sc. (Semester – IV) (2008 Pattern) Examination, 2010 MATHEMATICS MT – 801 : Field Theory (New)

Time : 3 Hours

N.B.: 1) Attempt **any five** questions. 2) Figures to the **right** indicate **marks**.

 b) Let F⊆E⊆K be fields. If [K : E] <∞ and [E : F] <∞, show that : [K : F] < ∞ and [K : F] = [K : E] [E : F]. c) Let p (x) be an irreducible polynomial in F [x]. Show that there exists an extension E of F in which p (x) has a root. 2. a) Show that a finite extension field is an algebraic extension. b) Let E = F (u₁,, u_n) be a finitely generated extension of F such that each u_i, i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence an algebraic extension of F. c) Let F be a field, and let σ : F→L be an embedding of F into an algebraically closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η : E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of x^p-1∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 				
 i) [K : F] < ∞ and ii) [K : F] = [K : E] [E : F]. c) Let p (x) be an irreducible polynomial in F [x]. Show that there exists an extension E of F in which p (x) has a root. 2. a) Show that a finite extension field is an algebraic extension. b) Let E = F (u₁,, u_n) be a finitely generated extension of F such that each u_i, i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence an algebraic extension of F. c) Let F be a field, and let σ : F→L be an embedding of F into an algebraically closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η: E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of a polynomial f (x) ∈ F [x], where deg f (x)≥1. b) Find the splitting field of x^p-1∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 	1.	a)		4
 ii) [K : F] = [K : E] [E : F]. c) Let p (x) be an irreducible polynomial in F [x]. Show that there exists an extension E of F in which p (x) has a root. 2. a) Show that a finite extension field is an algebraic extension. b) Let E = F (u₁,, u_n) be a finitely generated extension of F such that each u_i, i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence an algebraic extension of F. c) Let F be a field, and let σ : F→L be an embedding of F into an algebraically closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η: E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of x^p-1∈ Q[x]' p odd prime, and also find the degree of the splitting field. 7 c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 		b)	Let $F \subseteq E \subseteq K$ be fields. If $[K : E] < \infty$ and $[E : F] < \infty$, show that :	
 c) Let p (x) be an irreducible polynomial in F [x]. Show that there exists an extension E of F in which p (x) has a root. 2. a) Show that a finite extension field is an algebraic extension. b) Let E = F (u₁,, u_n) be a finitely generated extension of F such that each u_i, i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence an algebraic extension of F. c) Let F be a field, and let σ : F→L be an embedding of F into an algebraically closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η: E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of a polynomial f (x) ∈ F [x], where deg f (x) ≥ 1. b) Find the splitting field of x^p-1 ∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 			i) $[K:F] < \infty$ and	
 extension E of F in which p (x) has a root. 2. a) Show that a finite extension field is an algebraic extension. b) Let E = F (u₁,, u_n) be a finitely generated extension of F such that each u_i, i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence an algebraic extension of F. c) Let F be a field, and let σ : F→L be an embedding of F into an algebraically closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η: E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of a polynomial f (x) ∈ F [x], where deg f (x) ≥ 1. b) Find the splitting field of x^p-1 ∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 			ii) $[K:F] = [K:E] [E:F].$	6
 b) Let E = F (u₁,, u_n) be a finitely generated extension of F such that each u_i, i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence an algebraic extension of F. c) Let F be a field, and let σ : F→L be an embedding of F into an algebraically closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η: E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of a polynomial f (x) ∈ F [x], where deg f (x) ≥ 1. b) Find the splitting field of x^p-1∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 		c)		6
 i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence an algebraic extension of F. c) Let F be a field, and let σ : F→L be an embedding of F into an algebraically closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η: E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of a polynomial f (x)∈ F [x], where deg f (x)≥1. b) Find the splitting field of x^p-1∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 	2.	a)	Show that a finite extension field is an algebraic extension.	4
 closed field L. Let E = F (α) be an algebraic extension of F. Show that σ can be extended to an embedding η: E→L and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α. 3. a) Define the splitting field of a polynomial f (x)∈ F [x], where deg f (x)≥1. b) Find the splitting field of x^p-1∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 		b)	i = 1,, n is algebraic over F. Show that E is a finite extension of F and hence	6
 b) Find the splitting field of x^p-1∈ Q[x]' p odd prime, and also find the degree of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 		c)	closed field L. Let $E = F(\alpha)$ be an algebraic extension of F. Show that σ can be extended to an embedding $\eta: E \rightarrow L$ and the number of such extensions is	6
 of the splitting field. c) Let E/F be an algebraic extension and suppose that every irreducible polynomial in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 	3.	a)	Define the splitting field of a polynomial $f(x) \in F[x]$, where deg $f(x) \ge 1$.	2
in F [x] that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in F [x]. 4		b)		7
d) Is $Q(2^{\frac{1}{3}})$ a normal extension of Q ? Justify your answer. 3		c)	in F [x] that has a root in E splits into linear factors in E. Show that E is the	4
		d)	Is $Q\left(2^{\frac{1}{3}}\right)$ a normal extension of Q ? Justify your answer.	3

Max. Marks : 80

P.T.O.

[3721]	- 401 -2-	
4. a)	If $f(x) \in F[x]$ is irreducible over F, then show that all roots of $f(x)$ have the same multiplicity.	5
b)	Show that if F is a finite field, the number of elements of F is p^n for some prime p and an integer $n \ge 1$.	5
c)	Let p be a prime and n an integer ≥ 1 . Show that the roots of $x^{p^n} - x \in \mathbb{Z}_p[x]$ in its splitting field are distinct and form a field F with p^n elements. Show also	
	that F is the splitting field of $x^{p^n} - x$ over \mathbb{Z}_p .	6
5. a)	Suppose E is a finite separable extension of a field F. Show that E is a simple extension of F.	8
b)	Let $F \subset E \subset K$ be three fields such that E is a finite separable extension of F and K is a finite separable extension of E.	
	Show that K is a finite separable extension of F.	6
c)	Is a $\mathbb{Q}(\sqrt{2})$ a separable extension of \mathbb{Q} ? Why?	2
6. a)	Let F and E be fields, let $\sigma_1, \sigma_2, \dots, \sigma_n$ be distinct embeddings of F into E.	
	Show that $\sigma_1, \sigma_2,, \sigma_n$ are linearly independent over E.	6
b)	Let F be a finite normal separable extension of a field F. Show that F is the fixed field of G (E/F).	6
c)	If E/F is a Galois extension and G (E/F) \approx S ₃ , find the number of intermediate fields between F and E.	4
7. a)	Prove that any polynomial of degree ≥ 1 in $\mathbb{C}[x]$ factorises into linear factors in $\mathbb{C}[x]$.	8
b)	Let $f(x) \in F[x]$ and let E be the splitting field of $f(x)$. Suppose G (E/F) is a solvable group. Show that $f(x)$ is solvable by radicals over F.	8
8. a)	Show that the sum and difference of constructible numbers are constructible.	5
b)	Show that it is impossible to construct a cube with volume equal to twice the volume of a given cube using ruler and compass only.	5
c)	Show that the Galois group of $x^4 + 1 \in \mathbb{Q}[x]$ is the Klein four-group.	6

M.A./M.Sc. (Semester – IV) (2004 Pattern) Examination, 2010 MATHEMATICS MT – 801 : Algebraic Topology (Old)

Time : 3 Hours

Max. Marks: 80

		 N.B.: 1) Attempt any five questions. 2) All questions carry equal marks. 3) Figures to the right indicate maximum marks. 	
1.	a)	When are two paths in a space X said to be path homotopic ?	4
	b)	Prove that path homotopy is an equivalence relation in the set of all paths in X.	8
	c)	Give an example of a space X, and two paths f, and g, in X, which start and end at the same points, such that :	4
		i) f is homotopic to g ii) f is not homotopic to g.	
2.	a)	Define the group $\Pi_1(X, x_0)$, and define the multiplication in this group.	4
	b)	Prove that $\Pi_1(\mathbb{R}^n, 0) = \{e\}$, the trivial group with one element.	6
	c)	Let $A \subseteq X$, and $r = X \longrightarrow A$ be a map such that $r(a) = a$ for each $a \in A$. If	
		$a_0 \in A$, prove that $r_A : \prod_1 (X, a_0) \longrightarrow \prod_1 (A, a_0)$ is surjective.	6
3.			2 4
	c)	Let $p : E \longrightarrow B$ be a covering map, let $p(e_0) = b_0$. Prove that any path	
		$f: [0, 1] \longrightarrow B$, beginning at b_0 , has a unique lifting to a path $\tilde{f}: [0,1] \longrightarrow E$,	
			4
	d)	If $g: S' \to S'$ is $g(z) = z^3$, calculate explicitly the map $g_*: \prod_{i=1}^{n} (S', 1) \to \prod_{i=1}^{n} (S', 1)$.	6
4.	a)	Prove that there is no retraction of B^2 on to S'.	6
	b)	Let $f : \mathbb{C} \to \mathbb{C}$ be given by $f(z) = z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, with $ a_{n-1} + a_{n-2} + \dots + a_1 + a_0 < 1$.	
		Prove that the equation $f(z) = 0$ has a root in the unit ball $B = \{z \in \mathbb{C} \setminus z < 1\}.$	6
	c)	Find the fundamental group of the space $B \times S'$, where $B = \{ z \in \mathbb{C} \setminus z < 1 \}$,	
		$\mathbf{S}' = \{ \mathbf{z} \in \mathbf{C} \setminus \mathbf{z} = 1 \}.$	4

[3721] - 401

[3721]	-4-	
5. a)	State the Seifert-van Kampen theorem.	4
b)	Prove that if $n \ge 2$, the n-sphere S^n is simply connected.	6
c)	i) Prove that \mathbb{R}^1 and \mathbb{R}^n are not homeomorphic if $n \neq 1$.	3
	ii) Prove that \mathbb{R}^2 and \mathbb{R}^n are not homeomorphic if $n \neq 2$.	3
6. a)	Prove that $\Pi_1(X \times Y, x_0 \times y_0)$ is isomorphic to $\Pi_1(X, x_0) \times \Pi_1(X, x_0)$	I ₁ (Y, y ₀). 6
b)	Prove that $\prod_{1} (P^2, y)$ is a group of order 2, where P^2 is the pro-	jective plane. 6
c)	Let Y have the discrete topology, and $P: X \times Y \rightarrow X$ is $p(x, y) = p$ is a covering map.	x. Prove that 4
7. a)	Prove that the fundamental group of the figure eight is not abeli	an. 8
b)	Let a and b be points of S ² , and A a compact space and let $f : A$ be continuous. If a and b lie in the same component of S ² \ f(A),	
	null homotopic.	8 prove unat 1 is
8. a)	State the Jordan Separation theorem. Define all the terms that y	ou use. 4
b)	Give an example of a space X and two closed curves Y_1 and Y_2	in X such that : 6
	i) Y ₁ separates X	
	ii) Y_2 does not separate X.	
c)	Let $p: E \longrightarrow B$, with E simply connected.	
	Given any covering map $r: Y \longrightarrow B$, prove that there is a cover	ering map
	$q: E \longrightarrow Y \text{ at } r_0 q = p.$	6

B/I/10/420

4

4

4

Max. Marks: 80

M.A./M.Sc. Mathematics (2008 Pattern) (Sem. – IV) Examination, 2010

N.B.: 1) Attempt **any five** questions.

2) All questions carry equal marks.

3) Figures to the **right** indicate **full** marks.

1. a) Let W be a k-dimensional linear subspace of \mathbb{R}^n . Prove that there is an orthogonal

MT-803 : DIFFERENTIAL MANIFOLDS (New)

Time : 3 Hours

[3721] - 403

6 6

8

4

4

4

Prove that sgn $\pi = (-1)^{kl}$.

 $\pi = \begin{pmatrix} 1 & 2 & 3...k & k+1...k+l \\ k+1k+2...k+l & 1 & 2...k \end{pmatrix}.$

4

P.T.O.

[3721] - 403

 5. a) Let M be a k-manifold in ℝⁿ, and p∈ M, i) Define the tangent space to M at p, T_pM. ii) Prove that T_pM is well defined. b) Let M = {x ∈ ℝ³ \ x₁² + x₂² + x₃² = 1 }. 	4 4
Evaluate $T_p M$ where $p = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.	4
c) Let $\alpha : \mathbb{R}^k \to \mathbb{R}^n$ be C ² . Prove that $\alpha_*(x; v)$ is the velocity vector of the curve $y(t) = \alpha(x + tv)$ corresponding to the parameter value $t = 0$.	4
6. a) Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^2	
i) Define the 1-form df (x) (x; v).	4
ii) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be $f(x_1, x_2, x_3) = e^{x_1} \cdot \sin(x_2 x_3)$.	
Evaluate df $(1, 2, 3)$ $((1, 2, 3); (4, 5, 6))$.	4
b) i) What is an exact form ? Give an example.	4
ii) What is a closed form ? Give an example.	4
7. a) Let $\alpha : \mathbb{R}^k \to \mathbb{R}^n$ be \mathbb{C}^{∞} . If w is an <i>l</i> -form on \mathbb{R}^n , prove that	
$\alpha^* (dw) = d(\alpha^* w).$	6
b) If $\alpha : \mathbb{R}^3 \to \mathbb{R}^6$ is \mathbb{C}^{∞} , prove that	
$d\alpha_1 \wedge d\alpha_3 \wedge d\alpha_5 = (\det D\alpha (1, 3, 5)) \ dx_1 \wedge dx_2 \wedge dx_3.$	4
c) Let $A = (0, 1)^3$, $\alpha : A \to \mathbb{R}^4$ is $\alpha (s, t, u) = (s, u, t, (2u - t)^2)$, $Y_{\alpha} = \alpha(A)$.	
Evaluate $\int_{Y_{\alpha}} x_1 dx_1 \wedge dx_4 \wedge dx_3 + 2x_2 x_3 dx_1 \wedge dx_2 \wedge dx_3.$	6
8. a) When is a manifold said to be orientable ?	4
b) Give an example of a orientable manifold. Justify your answer.	4
c) Prove that any n-manifold in \mathbb{R}^n is an oriented manifold.	4
d) State the generalised Stokes theorem. Define all the terms that you use.	4

-2-

M.A./M.Sc. Mathematics (2004 Pattern) (Sem. – IV) Examination, 2010 MT-803 : MEASURE AND INTEGRATION (Old)

Time : 3 Hours

- N.B.: 1) Attempt any five questions. 2) Figures to the **right** indicate **full** marks.
 - 3) B denotes σ -algebra of subsets of X, μ denotes measure on the measure space (X, B).
- 1. a) Suppose that for each α in a dense set D of real numbers there is assigned a set $B_{\alpha} \in B$ such that $\mu(B_{\alpha} \sim B_{\beta}) = 0$ for $\alpha < \beta$. Prove that there is a measurable function f such that $f \leq \alpha$ a.e. on B_{α} and $f \geq \alpha$ a.e. on $X \sim B_{\alpha}$.

b) If
$$E_i \in B$$
 for $i = 1, 2, ..., then prove that $\mu \left(\bigcup_{i=1}^{\infty} E_i \right) \leq \sum_{i=1}^{\infty} \mu E_i$. 5$

- c) Show that if μ is complete and $E_1 \in B$ and $\mu(E_1 \Delta E_2) = 0$, then $E_2 \in B$. 5
- 2. a) Let (X, B) be a measurable space, {u_n} a sequence of measures that converge setwise to a measure µ, and {f_n} a sequence of non-negative measurable functions that converge pointwise to the function f.
 Prove that ∫fdµ ≤ lim ∫f_n dµ_n.
 - b) State and prove Monotone convergence theorem.
 - c) Prove that the union of a countable collection of positive set is positive.
- 3. a) Let f be an extended real-valued function defined on X. Then prove that the following statements are equivalent :
 - i) $\{x: f(x) < \alpha\} \in B \forall \alpha$ ii) $\{x: f(x) \le \alpha\} \in B \forall \alpha$ iii) $\{x: f(x) \ge \alpha\} \in B \forall \alpha$ iv) $\{x: f(x) \ge \alpha\} \in B \forall \alpha$. 6
 - b) If f and g are non-negative measurable functions and a, b are non-negative constants, prove that $\int af + bg = a \int f + b \int g$.
 - c) If v_1 and v_2 are any two signed measures, then prove that $\alpha v_1 / \beta v_2$ is signed measure, where α, β are real numbers.
- 4. a) Let (X, B, μ) be a σ -finite measure space and v a σ -finite measure defined on B. . Then prove that there is a measure v_0 , singular with respect to μ and a measure v_1 , absolutely continuous with respect to μ such that $v = v_0 + v_1$.
 - b) Let (X, B, μ) be a finite measure space and g be an integrable function such that for some constant M.

$$\int g\phi d\mu \leq M \|\phi\|_{p} \text{ for all simple functions } \phi \text{ Prove that } g \in L^{2}.$$
 5

c) If v is a signed measure such that $v \perp \mu$ and $v \ll \mu$, prove that v = 0.

8

4

4

5

5

6

5

6

Max. Marks : 80

5. a) Let μ be a measure on an algebra a, μ^* the outer measure induced by μ E any set. Prove that for $\epsilon > 0$, there is a set $A \in a$ with $E \subseteq A$ and	µ and
$\mu^* A \le \mu^* E + \epsilon$. Also there is a set $B \in a_{\sigma\delta}$ with $E \subseteq B$ and $\mu^* E = \mu^* B$. 6
b) Prove that the set function μ^* is an outer measure.	5
c) Let $\{(A_i \times B_i)\}$ be a countable disjoint collection of measurable recta whose union is a measurable rectangle $A \times B$. Prove that $\lambda(A \times B) = \Sigma \lambda(A_i \times B_i)$.	ingles 5
6. a) Let E and F be disjoint sets. Show that	
$\mu_* E + \mu_* F \le \mu_* (E \cup F) \le \mu_* E + \mu^* F \le \mu^* (E \cup F) \le \mu^* E + \mu^* F.$	6
b) By assuming $\mu_*E \le \mu^*E$ and $E \in a$ prove that $\mu_*E = \mu E = \mu^*E$.	5
c) Let B be a μ^* -measurable set with $\mu^* B < \infty$. Prove that $\mu_* B = \mu^* B$.	5
7. a) Let μ^* be a topologically regular outer measure on X. Prove that each	Borel
set is μ^* -measurable.	6
b) Let μ be a finite measure defined on a σ -algebra <i>m</i> which contains all the	Baire
sets of a locally compact space X. If μ is inner regular, prove that it is reg	gular. 5
c) Let K be a compact set, O an open set with $K \subseteq O$. Prove that $K \subseteq U \subseteq H$ where U is a σ -compact open set and H is a compact G_{δ} .	i⊆0· 5
 8. a) Let F be a closed subset of X topological space. Then F is a locally con Hausdorff space and the Baire sets of F are those sets of the form B ∩ where B is a Baire set in X. 	
 b) Let μ be a nonnegative extended real valued function defined on the of open subsets of X and satisfying i) μO<∞, if O is compact ii) μO₁≤μO₂, if O₁⊆0 	
iii) $\overline{\mu}(O_1 \cup O_2) = \overline{\mu}O_1 + \overline{\mu}O_2$, if $O_1 \cap O_2 = \phi$ iv) $\overline{\mu}(UO_i) \le \sum \mu O_i$	<u> </u>
i	
v) $\overline{\mu}(O) = \sup \left\{ \mu U \mid \overline{U} \subseteq O, \overline{U} \text{ is compact} \right\}$	
Prove that set function μ^* defined by $\mu^* E = \inf \{\overline{\mu} O : E \subseteq O\}$ is a topologically regular outer measure.	6
c) Prove that every σ -bounded set E is contained in a σ -compact open set	et O. 4

B/I/10/305

-4-

[3721] - 403

P.T.O.

2) Figures to the **right** indicate **full** marks. 1. a) Give an example of a covariant function. 4 b) Let $i : S^{n-1} \to B^n$ be the inclusion map, and $I : S^{n-1} \to S^{n-1}$ be the identity. Prove that there exists $f: B^n \to S^{n-1}$ with $f \circ i = I$, if and only if the identity map I is homotopic to a constant map. 8 c) i) Define a strong deformation retract. 4 ii) Give an example of a strong deformation retract. 2. a) Let $A \subseteq X$. Prove that the relation of being homotopic relative to A is an equivalence relation. 4 b) Let f, g : X \rightarrow Sⁿ be continuous mappings such that $f(x) + g(x) \neq 0 \ \forall x \in X$. Prove that f is homotopic to g. 4 c) i) When is a space said to be contractible ? 2 ii) Give an example of a space that is contractible. 2 iii) Give an example of a space that is not contractible. 4 3. a) If f is any path in X, and g is a null path in X such that f * g exists, prove that f * g and f are equivalent. 4 b) Give an example to two paths f and g between two points x_0 and x_1 in a space X which are not equivalent. 6 c) Let $x_0, x_1 \in X$, where X is path connected. Prove that $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are isomorphic. 6 4. a) If A is a strong deformation retract of X, show that the inclusion map $i: A \to X$ induces an isomorphism $i^*: \pi_i(A, a) \to \pi_1(X, a)$ for any point

M.A./M.Sc. (Sem. - IV) Mathematics (2008 Pattern) Examination, 2010 MT 804 : ALGEBRAIC TOPOLOGY (New)

N.B.: 1) Attempt **any five** questions.

Time : 3 Hours

 $a \in A$.

Max. Marks: 80

[3721] - 404

[3721]	- 404
--------	-------

-2-

	b)	Prove that a contractible space has a trivial fundamental group.	4
	c)	i) If X and Y are homeomorphic, and path connected prove that	
		$\pi_1(X, x_0)$ and $\pi_1(Y, y_0)$ are isomorphic.	4
		ii) Is the converse true ?	4
5.	a)	Define the higher homotopy groups $\pi_n(X, x_0)$.	4
	b)	Prove that every non-constant complex polynomial has a root in complex	0
		numbers.	8
	c)	Draw a torus and calculate its fundamental group.	4
6.	a)	i) Define a covering map.	2
		ii) Give an example of a covering map.	2
	b)	Prove that a covering map is α local homeomorphism.	4
	c)	Let G be a group acting on a space X. When is the action of G on X said to be properly discontinuous ? Give an example.	8
7.	a)	Define a fibration, and give an example of a fibration.	4
	b)	Let $p: \tilde{X} \to X$ be a fibration with unique path lifting. Suppose that f and g	
		are paths in \tilde{X} with $f(0) = g(0)$, and pf ~ pg, prove that f ~ g.	6
	c)	i) Find the fundamental group of $\mathbb{R}^2 \setminus \{0\}$.	3
		ii) Is \mathbb{R}^1 homeomorphic to \mathbb{R}^2 ?	3
8.	a)	When is a set of points in \mathbb{R}^n said to be geometrically independent ? Give an example.	4
	b)	Define the boundary $\partial_{p}C_{p}$ of a p-chain C_{p} .	6
	c)	Prove that the boundary of the boundary of a p-chain is zero.	6

-3-

[3721] - 404

M.A./M.Sc. (Sem. – IV) Mathematics (2004 Pattern) Examination, 2010 MT 804 : MATHEMATICAL METHODS – II (Old)

Time : 3 Hours

Max. Marks : 80

N.B.: 1) Answer any five questions.2) Figures to the right indicate full marks.

1. a) Solve the non-homogeneous Fredholm integral equation

$$u(x) = x + \lambda \int_{0}^{1} (xt^{2} + x^{2}t) u(t) dt.$$

b) Find the eigenvalues of the homogeneous Fredholm equation with degenerate Kernel

$$u(x) = \lambda \int_{0}^{\pi} \left[\cos^{2} x \cos 2t + \cos 3x \cos^{3} t \right] u(t) dt .$$
 8

- 2. a) Prove that eigenvalues of a real symmetric kernel are real.
 - b Show that eigen functions of a symmetric kernel corresponding to different eigenvalues are orthogonal.
 - c) The multiplicity of any non-zero eigenvalue is finite, when

$$\int_{a}^{b} \int_{a}^{b} \left| k(x,t) \right|^{2} dx dt < \infty, \text{ where } k(x,t) = k(t,x).$$
5

- 3. a) Prove that every continuous function g(s) defined by $g(s) = \int k(s,t) h(t) dt$ where k(s, t) is symmetric kernel, can be expanded as a series of eigen functions of k(s, t).
 - b) Find Neumann series solution for the integral equation

$$u(x) = f(x) + \lambda \int_0^1 x e^t u(t) dt.$$

4. a) In the light of Fredholm alternative discuss the existence of solutions to the non-homogeneous Fredholm equation

$$u(x) = f(x) + \lambda \int_{0}^{\pi} \left[\cos^{2} x \cos 2t + \cos 3x \cos^{3} t \right] u(t) dt.$$
8

8

5

6

8

8

8

8

4

8

[3721] - 404

- -4-
- b) Find the resolvent kernel of the integral equation

$$u(x) = 1 + \lambda \int_{0}^{1} (1 - 3xt) u(t) dt .$$
 8

- 5. a) Find the curve with fixed end points such that its rotation about x-axis gives rise to a surface of minimum surface area.
 - b) Determine the extremal of the functional $I[y(x)] = \int_{-1}^{l} \left[\frac{1}{2} \mu y''(x) + \rho y(x) \right] dx$ subject to y(-l) = y(l) = y'(-l) = y'(l) = 0. Here, μ, ρ are given constants.
- 6. a) Find the extremals of the functional

$$I = \int_{x_1}^{x_2} (2yz - 2y^2 - {y'}^2 - {z'}^2) dx .$$
 8

- b) Find the curve of fixed length L > 1, joining the points (0, 0) and (1, 0) in the plane that lies above the x-axis and encloses the maximum area between itself and the x-axis.
- 7. a) Show that if y(x) is a piecewise continuous function and $\int_{1}^{x_1} y(x)\eta(x) = 0$,

holds for arbitrary continuous functions n(x) satisfying the conditon :

$$\int_{x_0}^{x_1} \eta(x) = 0 \text{ then } y(x) \text{ is a constant.}$$

- b) Explain the Legendre condition.
- c) Find the curve joining given points A and B which is traversed by a particle moving under gravity from A and B in the shortest time. (This is known as the Brachistochrone problem.)
- 8. a) Show that the triangle with greatest area A for a given perimeter is equilateral. 8 8
 - b) Find geodesics on a unit sphere.

M.A./M.Sc. Examination, 2010 MATHEMATICS (2005 Pattern) MT 806 : Lattice Theory (Old)

Time : 3 Hours

Max. Marks : 80

- N.B.: 1) Answer any five questions.2) Figures to the right indicate full marks.
- 1. a) Prove that the set A of all real valued functions defined on X : for f, $g \in A$, set $f \le g$ if and only if $f(x) \le g(x)$ for all $x \in X$ is a lattice. 5
 - b) Let be a post in which inf H exists for all H⊆ P. Show that is a lattice.
 - c) Prove that I is a prime ideal of a lattice L if and only if there is a homomorphism Q of L onto C_2 with $I = Q^{-1}\{0\}$.

2. a) Let L and K be lattices, let θ and \oint be congrence relations of L and K respectively. Define the relation $\theta \times \oint$ on L×K by $\langle a, b \rangle \equiv \langle c, d \rangle (\theta \times \theta \times \oint)$ if and only if $a \equiv c(\theta)$ and $b \equiv d(\oint)$. Then show that $\theta \times \oint$ is a congruence relation on L×K and conversely, every congruence relation of L×K is of this form.

- b) Prove that dual of a distributive lattice is distributive.
- c) Prove that if a lattice L is finite then L and Id(L), the ideal lattice of L, are isomorphic.
- 3. a) Let L be a lattice and Con (L) be the set of all its congruences. Then prove that Con (L) is a lattice.6
 - b) State and prove Nachbin Theorem. 8 c) Show that $N_s \cong L \times K$ implies that L or K has only one element. 2

P.T.O.

[3721] – 46

6

8

4

[3721] - 46

a)	Prove that a lattice is modular if and only if it does not contain a pentagon.	8
b)	State and prove Hashimoto theorem.	8
a)	Let L be a lattice of finite length. If L is semimodular then prove that any two maximal chains of L are of same length.	8
b)	Let L be semimodular lattice. Prove that if p and q are atoms of L, $a \in L$ and $a < a \lor q \le a \lor p$, then prove that $a \lor p = a \lor q$.	4
c)	Let L be a lattice of finite length. If L satisfies the condition : a, $b \in L$ with $a \neq b$, a and b cover $a \land b$, then $a \lor b$ covers a and b. Then prove that L is semimodular.	4
a)	 Let L be a lattice and a, b ∈ L. Then prove that the following conditions are equivalent. i) a M b (i.e. (a, b) is a modular pair) 	8
	ii) $\Psi_{b}: x \to x \land b$, $x \in [a, a \lor b]$ is onto.	
	iii) $Q_a: y \to y \lor a, y \in [a \land b, a]$ is one to one.	
b)	Let L be a distributive lattice, I be an ideal and D be a dual ideal of L such that $I \cap D = Q$. Then prove that there exists a prime P such that $I \subseteq P$ and $P \cap D = Q$.	8
a)	Prove that a lattice L is Boolean if and only if it is isomorphic to some field of sets.	7
b)	Prove that a lattice L is conditionally complete, if every bounded non-empty subset of L has g. <i>l</i> .b.	5
c)	Illustrate with an example that the ideals of a Boolean lattice do not form a Boolean lattice.	4
a)	Define an isotone function f on a lattice L into L and prove that if L is a complete lattice and f is an isotone function on L into L then $f(a) = a$ for some $a \in L$.	8
b)	If L is a finite Boolean lattice then prove that the ideal lattice Id (L) of L is Boolean.	5
c)	Prove that any modular lattice can be embedded in a complete modular lattice.	3 215
	 b) a) b) c) a) b) c) a) b) c) a) b) b) b) b) b) 	 b) Let L be semimodular lattice. Prove that if p and q are atoms of L, a∈ L and a < a ∨ q ≤ a ∨ p, then prove that a ∨ p = a ∨ q. c) Let L be a lattice of finite length. If L satisfies the condition : a, b ∈ L with a ≠ b, a and b cover a ∧ b, then a ∨ b covers a and b. Then prove that L is semimodular. a) Let L be a lattice and a, b ∈ L. Then prove that the following conditions are equivalent. i) a M b (i.e. (a, b) is a modular pair) ii) Ψ_b : x → x ∧ b, x ∈ [a, a ∨ b] is onto. iii) Q_a : y → y ∨ a, y ∈ [a ∧ b, a] is one to one. b) Let L be a distributive lattice, I be an ideal and D be a dual ideal of L such that I ∩ D = Q. Then prove that there exists a prime P such that I ⊆ P and P ∩ D = Q. a) Prove that a lattice L is Boolean if and only if it is isomorphic to some field of sets. b) Prove that a lattice L is conditionally complete, if every bounded non-empty subset of L has g.l.b. c) Illustrate with an example that the ideals of a Boolean lattice do not form a Boolean lattice. a) Define an isotone function f on a lattice L into L and prove that if L is a complete lattice and f is an isotone function on L into L then f (a) = a for some a ∈ L. b) If L is a finite Boolean lattice then prove that the ideal lattice Id (L) of L is Boolean. c) Prove that any modular lattice can be embedded in a complete modular lattice.

M.A./M.Sc. (Sem. – II) (2008 Pattern) Examination, 2010 MATHEMATICS MT-603 : Groups and Rings (New)

Time : 3 Hours

N.B.: *i)* Attempt **any five** questions. *ii)* Figures to **right** indicate **full** marks.

1. a) If G = (a) is a cyclic group of order n, generated by a, then prove that for each positive divisor k of n, the group G has exactly one subgroup of order k

namely
$$\left(a^{\frac{n}{k}}\right)$$
.

b) i) If a group G contains elements a and b such that |a| = 4, |b| = 2 and $a^{3}b = ba$, then find | ab |. 3 2 ii) Show that $U(10) \neq U(8)$. c) If the group G is with exactly eight elements of order 10, how many cyclic subgroups of order 10 does G have ? Is G cyclic ? 5 2. a) If the pair of cycles $\alpha = (\alpha_1, ..., \alpha_m)$ and $\beta = (\beta_1, ..., \beta_n)$ have no entries in common, then prove that $\alpha\beta = \beta\alpha$. 5 b) i) What are possible orders for the elements of S_6 and A_6 ? 6 ii) What is the maximum order of any element in S_{10} ? c) i) Find two groups H and K such that $H \neq K$ but, Aut(H) \simeq Aut(K). ii) Find Aut(Z). 5 3. a) State and prove Lagrange's theorem for finite groups. Is the converse of Lagrange's theorem true ? Justify. 8 b) i) If a group G contains elements of orders 1 through 10, what is the minimum possible order of G? 8 ii) Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all a in G.

[3721] – 203

Max. Marks: 80

[3721] - 203

4.	a)	If G and H are two finite cyclic groups, then prove that $G \oplus H$ is cyclic iff $ G $ and $ H $ are co-prime.	6
	b)	If $G = \{e, x, x^2, y, yx, yx^2\}$ is a non-abelian group with $ x = 3$, $ y = 2$ then prove that $xy = yx^2$.	5
	c)	If G is a non-abelian group of order p^3 , p is a prime, and $Z(G) \neq \{e\}$ then prove that $ Z(G) = p$.	5
5.	a)	If ϕ is a group homomorphism from a group G to \overline{G} with kernel ϕ as K,	
		then prove that $\frac{G}{K} \simeq \phi(G)$.	5
	b)	Determine all homomorphisms from Z_6 to Z_{15} .	6
	c)	Find all abelian groups (upto an isomorphism) of order 360.	5
6.	a)	Suppose that G is a finite abelian group of order p ⁿ m where p is a prime that	
		does not divide m, then prove that $G = H \times K$ where $H = \left\{ x \in G \mid x^{p^n} = e \right\}$ and	
		$K = \left\{ x \in G \mid x^{m} = e \right\}.$ Also show that $\mid H \mid = p^{n}.$	6
	b)	What is the smallest positive integer n such that there are two nonisomorphic groups of order n ?	5
	c)	Calculate the number of elements of order 2 in the group Z_{16} .	5
7.	a)	If G is a finite group and p is a prime such that p^k divides $ G $, then prove that G has at least one subgroup of order p^k .	6
	b)	Use Sylow's theorem to prove that any group of order 99 is isomorphic	
		to Z_{99} or $Z_9 \oplus Z_{11}$.	5
	c)	Calculate all conjugacy classes for quaternian group Q8.	5
8.	a)	Prove that if H is a subgroup of a finite group G and H is a power of a prime p then H is contained in some Sylow p-subgroup of G.	6
	b)	Find all the Sylow Z-subgroups of S ₃ .	5
	c)	Suppose that G is a group of order 48, show that the intersection of any two distinct Sylow 2-subgroups of G has order 8.	5

-2-

Time : 3 HoursMax. Marks : 80	0
N.B.: i) Attempt any five questions. ii) Figures to the right indicate full marks.	
1. a) If ϕ : is a homomorphism of the group G into the group G', then prove that $\phi(1)=1$	
$\phi(x^{n}) = (\phi(x))^{n} \forall x \in G, n \in \mathbb{Z}^{\cdot}$	5
b) Prove that no two of the additive groups Z, Q, IR are isomorphic to each other.	6
c) Show that for $n \ge 2$, the $(n - 1)$ transpositions $(12) (23) \dots (n - 1 n)$ generates S_n .	5
 2. a) If m and n are integers, not both zero, then prove that the subgroup < m, n > of Z generated by them is the cyclic subgroup generated by their g.c.d. 	6
b) Determine the orders of all elements of S_4 .	5
c) If G has trivial centre, then show that for $a \neq b$ in G, the inner automorphisms j_a and j_b are distinct. Deduce that S_3 has at least six distinct inner	
auto-morphisms.	5
3. a) If G is a finite group of order n such that for every divisor d of n, G has at most one subgroup of order d, then prove that G is cyclic.	6
b) Prove that the converse of Lagrange's theorem holds in S_4 but does not hold in A_4 .	8

c) If $G = S_3$ and $H = \langle (23) \rangle$, find $x \in S_3$ such that $xH \neq Hx$.

-3-

M.A./M.Sc. (Sem. – II) (2004 Pattern) Examination, 2010 MATHEMATICS MT-603 : Group Theory (Old)

[3721] - 203

4. a) Prove that a group of order p^n , p is a prime and $n \ge 1$ has non-trivial centre. 5 b) Find all conjugacy classes of Q_8 , quaternian group, and hence write its class equation. 6 3 c) i) Show that SL (n, z) Δ GL (n, z). 2 ii) In any group G show that ab and ba are conjugate to each other. 5. a) If H and K are subgroups of G, at least one being normal in G, then prove that HK = KH is a subgroup of G. What happens if both are normal subgroups ? 6 b) Show that the Klein's four group V_4 is a normal subgroup of S_4 . Find $\frac{S_4}{V_4}$. 6 c) Prove that a finite abelian group of square free order is cyclic. 4 6. a) If $\phi: G \to G'$ is a surjective homomorphism with Kernal N, then prove that $\frac{G}{N} \sim G'$. 5 b) If T is the multiplicative group of complex numbers of absolute value 1 then show that $\frac{\mathbb{R}}{\mathbb{Z}} \simeq \mathbb{T}$. 6 c) If G acts on the set X, then show that for $s \in G, x \in X$, stab (sx) = $s(stab(x))s^{-1}$. 5 7. a) If the prime power p^k divides the order n of a finite group G then prove that G contains a subgroup of order p^k . 6 b) Prove or disprove any group of order 33 is cyclic. 5 5 c) Find the number of elements of order five in a group of order 25. 8. a) If a finite group G of order n = kl, (k, l) = 1, has normal subgroups A and B of orders k, *l* respectively then prove that G = AB (direct). 5 b) If H Δ G and if H and $\frac{G}{H}$ are both soluble, then prove that G is soluble. 6 5 c) Prove or disprove A group of order 200 is soluble.

-4-

[3721] - 203

M.A./M.Sc. (Sem. – IV) Examination, 2010 MATHEMATICS (2008 Pattern) MT-802 : Combinatorics (New)

Time : 3 Hours

Max. Marks: 80

N.B.: 1) Attempt any five questions.2) Figures to the right indicate full marks.

- A) How many sequences of length 5 can be formed using the digits 0, 1, 2, ..., 8, 9 with and without repeatation ? Also find the number of sequences of length 5 that can be formed using the digits 0, 1, 2, ..., 8, 9 with the property that exactly two of the ten digits appear (Eg. : 00550).
 - B) How many arrangements of the seven letters in the word "SYSTEMS" have the E occurring somewhere before the M ? How many arrangements have E somewhere before the M and the three 'S's grouped consecutively ?
 - C) What is the probability that 2 (or more) people in a random group of 25 people have a common birthday ?
- 2. A) Among all arrangements of "WISCONSIN" without any pair of consecutive vowels, what fraction have W adjacent to an I ?
 - B) How many integer solution are there to the equation $x_1 + x_2 + x_3 + x_4 = 30$, with $x_i \ge 0$? How many solutions with $x_i \ge i$? How many solutions with $x_1 \ge 2$, $x_2 \ge 2$, $x_3 \ge 4$, $x_4 \ge 1$?
 - C) Use generating functions to find the number of ways to collect \$ 15 from 20 distinct people if each of the first 19 people can give a dollar (or nothing) and twentieth person can give either \$ 1 or \$ 5 or nothing.
- 3. A) Using summation method find a generating function for $a_r = r (r + 2)$.
 - B) Prove by combinatorial argument that $C(n, 1) + 6C(n, 2) + 6C(n, 3) = n^3$ and evaluate $1^3 + 2^3 + ... + (n-1)^3 + n^3 = ?$
 - C) Find the number of r-digit quaternary sequences with an even number of 0's and odd number of 1's.

Р.Т.О.

[3721] - 402

6

4

6

6

6

4

6

6

4.	A)	State and prove Burnside's theorem.	8
	B)	Use generating functions to the set of simultaneous recurrence relations given below	
		$a_n = a_{n-1} + b_{n-1} + c_{n-1}, b_n = 3^{n-1} - c_{n-1}$	
		$c_n = 3^{n-1} - b_{n-1}, a_1 = 1 = b_1 = c_1.$	8
5.	A)	State and prove the Inclusion-Exclusion formula.	6
	B)	Solve the recurrence relation	
		$a_n = a_1 a_{n-1} + a_2 a_{n-2} + \dots + a_{n-1} a_1$	
		where $a_0 = 0$ and $a_1 = 1$.	6
	C)	Find the coefficient of x^{25} in $(1 + x^3 + x^8)^{10}$.	4
6.		How many different 3-colorings of the bands of an n hand baton are there, if the baton is unoriented ?	6
	B)	Find the pattern inventory of black-white edge colouring of a tetrahedron.	6
	C)	Find the number 7 bead necklaces distinct under rotations using 3 black and 4 white beads.	4
7.		How many ways are there to send six different birthday cards denoted C_1 , C_2 , C_3 , C_4 , C_5 , C_6 to three aunts and three uncles, denoted A_1 , A_2 , A_3 , U_1 , U_2 , U_3 if aunt A_1 would not like cards C_2 and C_4 ; if A_2 would not like C_1 or C_5 ; if A_3 likes all cards; if U_1 would not like C_1 or C_5 ; if U_2 would not like C_6 ?	6
		T J U	

-2-

[3721] - 402

6

- B) Find the exponential generating function for the number of ways to place r (distinct) people into three different rooms with at least one person in each room. Repeat with an even number of people in each room.
- C) Using combinatorial argument, prove that $\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$. 4
- 8. A) How many ways are there to select 25 toys from seven types of toys with between two and six of each type ?
 - B) Solve the following recurrence relations when $a_0 = 1$.
 - i) $a_n^2 = 2a_{n-1}^2 + 1$ ii) $a_n = -n a_{n-1} + n!$. 10

M.A./M.Sc. (Sem. – IV) Examination, 2010 MATHEMATICS (2004 Pattern) MT-802 : Hydrodynamics (Old)

Time : 3 Hours

N.B.: 1) Answer any five questions.2) Figures to the right indicate marks.

1.	a)	Explain Lagranges method of description and hence derive equation of continuity.	7
	b)	A two dimensional unsteady velocity field is given by $u = x (1 + 3t)$, $v = y$. Find the equation of stream line.	4
	c)	Derive the relation between potential function and stream function in polar co-ordinate system.	5
2.	a)	Show that if the motion is irrotational, then the velocity vector is the gradient of a scalar function of position.	6
	b)	A two dimensional incompressible flow field has the x component of velocity given by the expression $u = e^{-x} (x \sin y - y \cos y)$. Determine y component of velocity. Is this flow irrotational ?	5
	c)	In a cylindrical co-ordinate system (r, θ , z) the radial component of velocity	
		$\overline{q}(u, v)$ of a two dimensional flow is $u(r, \theta) = \frac{3}{2}r^{\frac{3}{2}}\cos\theta$. Find the expression	
		for v when $v = 0$ at $\theta = 0$.	5
3.	a)	State and prove Bernoulli's theorem for unsteady flow.	9
	b)	Test whether the motion specified by $\overline{q} = \frac{k^2(x\overline{j} - y\overline{i})}{x^2 + y^2}$ (k = constant) is of the	
		potential kind and if so, determine the velocity potential.	7
4.	a)	State and prove Kutta-Joukowski theorem.	8
	b)	State and prove the theorem of Blasius.	8

Max. Marks: 80

[3721] - 402

-4-

5.	a)	Define vortex pair and find the complex potential of vortex pair.	8
	b)	Find the equation of the stream lines due to uniform line sources of strength m through the points $A(-c, 0)$, $B(c, 0)$ and a uniform line sink of strength 2m through the origin.	8
6.	a)	Define Stokes stream function.	5
	b)	Discuss the flow due to a circular cylinder of mass m moving with velocity u.	6
	c)	A two dimensional flow towards α normal boundary is found to be characterised by α normal component of velocity that varies directly with distance from the boundary. Determine the stream function.	5
7.	a)	Explain shear rate, volumetric deformation and simple shear.	8
	b)	The velocity components of a certain flow are given as $u = \infty (x + y)$, $v = b (x^2 - y^2) + 6y$, $w = -2dz$ where a, b and d are constants. Represent the motion as the sum of rotation and deformation of fluid element.	8
8.	a)	Obtain the relation between stress and rate of strain components.	8
	b)	What is the complex potential for two-dimensional fluid motion ? Discuss the flow for which $w = z^2$.	8

B/I/10/420

M.A./M.Sc. (Semester – IV) Examination, 2010 (2008 Pattern) MATHEMATICS MT 805 : Lattice Theory (New)

Time : 3 Hours

N.B.: 1) Answer any five questions.2) Figures to the right indicate full marks.

1. a) Let the algebra $L = \langle L; \land, \lor \rangle$ be a lattice. Set $a \le b$ if and only if

 $a \wedge b = a$. Then prove that $L^P \!\!=\! \left< L; \le \right>$ is a poset and the poset L^P is a lattice.

b) Let I be an ideal and let D be a dual ideal. If $I \cap D \neq \phi$ then show that $I \cap D$ is	
a convex sublattice, and every convex sublattice can be expressed in this	
form in one and only way.	6

c) Find all neutral elements of $C_2 \times C_3$, where C_i , i = 2, 3 are chains of i elements.

2. a	a)	Prove that I is a prime ideal of a lattice L if and only if there is a homomorphism
		ϕ of L onto C ₂ with $I = \phi^{-1} \{0\}$.

b) Prove that if L is finite then L and Id(L) (ideal lattice of L) are isomorphic.

c) Let L be a lattice and Con (L) be the set of all its congruences. Then prove that Con (L) is a lattice.6

3. a) Prove that a lattice is modular if and only if it does not contain a pentagon.8b) State and prove Nachbin theorem.8

- 4. a) Let L be a distributive lattice with 0. Show that Id (L), the ideal lattice of a lattice L, is pseudo complemented. Is the converse true ? Justify.
 - b) State and prove Hashimoto theorem.

P.T.O.

8

8

[3721] - 405

Max. Marks : 80

6

4

6

[3721] - 405

5.	a)	Let L be a finite distributive lattice. Then prove that the map $Q: a \rightarrow r(a)$, where $r(a) = \{j \in J(L) \mid j \le a\}$, is an isomorphism between L and $H(J(L))$.	7
	b)	Let L be a lattice, let P be a prime ideal of L, and let a, b, $c \in L$. Prove that if $a \lor (b \land c) \in P$ then $(a \lor b) \land (a \lor c) \in P$.	5
	c)	Prove that a lattice L is distributive if it satisfies : $(x \land y) \lor (y \land z) \lor (z \land x) = (x \lor y) \land (y \lor z) \land (z \lor x)$ for x, y, z \in L.	4
6.	a)	Prove that every lattice is a chain if and only if its every ideal is a prime ideal.	5
	b)	Prove that in a Boolean lattice, an ideal is maximal if and only if it is prime.	6
	c)	Prove that any finite distributive lattice is pseudo complemented.	5
7.	a)	State and prove Stone's separation theorem for a distributive lattice.	8
	b)	Prove that in a modular lattice, an element is standard if and only if it is distributive.	6
	c)	Show that $N_5 \cong L \times K$ implies that the lattice L or K has only one element.	2
8.	a)	Prove that the set of all neutral elements of a lattice forms a sublattice.	6
	b)	Prove that the complemented elements of a distributive lattice form a sublattice.	5
	c)	Prove that every ideal of a distributive lattice is a standard ideal and conversely.	5

-2-

M.A./M.Sc. (Semester – IV) Examination, 2010 (2004 Pattern) MATHEMATICS MT 805 : Field Theory (Old)

Time : 3 Hours

Max. Marks: 80

N.B.: 1) Attempt any five questions.2) Figures to the right indicate marks.

1. a)	Let k be a field and $F \subseteq E$ extension fields of k. Show that $[E:k] = [E:F] [F:k]$.	6
b)) Let α be algebraic over a field k. Show that $k(\alpha) = k[\alpha]$.	5
c)	Find the degree of $\mathbf{K} = \mathbf{Q}(\sqrt{2}, \mathbf{i})$ over \mathbf{Q} . Justify your answer.	5
2. a)	Let $\alpha \in E$, where E is a field extension of a field F. Suppose L is a field containing F and let $\sigma: E \to L$ be an isomorphism over F from E into L. Let $f(x) \in F[x]$ be such that $f(\alpha) = 0$. Show that $\sigma(\alpha)$ is a root of $f(x)$.	4
b)) Let k be a filed and f a polynomial in $k[X]$ of degree ≥ 1 . Show that there exists an extension E of k in which f has a root.	5
c)	Let K be a splitting field of the polynomial $f(X) \in k[X]$. If E is another splitting	
	field of f, show that there is an isomorphism $\sigma\!:\!E\to K$ inducing identity on	
	k. show also that if $k \subset k \subset k^a$, where k^a is an algebraic closure of k, then any embedding of E in k^a inducing the identity on k must be an isomorphism of E onto K.	7
3. a)	If K_1 , K_2 are normal over k and are contained in some filed L, show that $K_1 \cap K_2$ is normal over k.	4
b)) Let $E = F(\alpha)$, where α is algebraic over F, of odd degree. Show that	
	$\mathbf{E} = \mathbf{F}(\alpha^2).$	5
c)	Let $E \supset F \supset k$ be a tower of fields. Show that $[E:k]_s = [E:F]_s [F:k]_s$	7

[3721] - 405

-3-

B/I/10/420

4.	a)	Construct a finite filed of 9 elements.	5
	b)	Let E be a finite extension of a field k. Suppose there are only a finite number	
		of fields F such that $k \subset F \subset E$. Show that there is $\alpha \in E$ such that $E = k(\alpha)$.	6
	c)	Which of the following is a Galois extension ? Justify your answer.	
		i) $\mathbb{Q}\left(2^{\frac{1}{3}}\right)/\mathbb{Q}$ ii) $\mathbb{Q}(i)/\mathbb{Q}$	5
5.	a)	Let K be a field and let G be a finite group of automorphisms of K of order n. Let $k = K^G$ be the fixed field. Show that K is a finite Galois extension of k, and its Galois group is G. Show that $[K : k] = n$.	8
	b)	Let $f(X) = X^3 - 3 \in Q[X]$. What is the splitting field of $f(X)$? Find the Galois group of $f(X)$, by explicitly writing all the automorphisms.	8
6	a)	Let K be a Galois extension of a field k with cyclic Galois group having 6 elements. Determine the number of intermediate fields between k and K.	5
	b)	Let $f(X) = X^3 + aX + b \in Q[X]$ be an irreducible polynomial. What is the discriminant of $f(X)$? State when the Galois group $f(X)$ is A_3 and S_3 .	5
	c)	Let E/k be a finite extension. Let $\alpha \in E$. Define the trace $Tr_{r_{e}}(\alpha)$. Show that	
		Let E/k be a finite extension. Let $\alpha \in E$. Define the trace $\operatorname{Tr}_{E/}(\alpha)$. Show that if E is a finite separable extension of k, then $\operatorname{Tr} : E \to k$ is a nonzero	
		functional.	6
7.	a)	Let k be a field, n an integer > 0, (n, p) = 1, if ch. $k = p > 0$. Assume that there is a primitive n-th root of unity in k. Let K/k be a cyclic extension of degree n. Prove that there exists $\alpha \in K$ such that $K = k(\alpha)$, and α satisfies $X^n - a = 0$	
		for some $a \in k$.	8
	b)	Let E be a separable extension of k. Suppose E/k is a solvable extension. Show that E is solvable by radicals.	8
8.	a)	If n is odd > 1, show that $\phi_{2n}(X) = \phi_n(-X)$, where $\phi_n(X) = \prod_{\zeta} (X - \zeta)$, where ζ varies over primitive n-th roots of 1.	6
	b)	Find the Galois group of the following polynomials :	
		i) $X^3 - X + 1$ ii) $X^2 - 2$.	5
	c)	Show that the order of a finite field is always a power of a prime.	5

M.A./M.Sc. (Semester – II) Examination, 2010 (2004 Pattern and 2008 Pattern) MATHEMATICS MT-602 : Differential Geometry (Old and New)

Time: 3 Hours

Instructions : i) Attempt **any five** questions. ii) Figures to the **right** indicate **full** marks.

- 1. a) Let S be an n-surface in \mathbb{R}^{n+1} , $S = f^{-1}(c)$ where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0$ for all $q \in S$. Suppose $g: U \to \mathbb{R}$ is a smooth function and $p \in S$ is an extreme point of g on S. Prove that there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.
 - b) Find the integral curve through p = (1, 1) of the vector field $f(x_1, x_2) = (x_2, -x_1)$. 5
 - c) Sketch the level sets $f^{-1}(c)$, for n = 0, 1, of each function at the heights indicated
 - i) $f(x_1, x_2, ..., x_{n+1}) = x_{n+1}; c = -1, 0, 1$

ii)
$$f(x_1, x_2, ..., x_{n+1}) = x_1 - x_2^2 - ... - x_{n+1}^2$$
; $c = 0, 1$.

- 2. a) Let $S = f^{-1}(c)$ be an n-surface in \mathbb{R}^{n+1} , where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0$ for all $q \in S$, and let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If $\alpha: I \to U$ is any integral curve of X such that $\alpha(t_0) \in S$ for some $t_0 \in I$, then prove that $\alpha(t) \in S$ for all $t \in I$.
 - b) For $0 \neq (a_1, a_2, ..., a_{n+1}) \in \mathbb{R}^{n+1}$ and $b \in \mathbb{R}$, show that the n-plane $a_1x_1 + a_2x_2 + ... + a_{n+1}x_{n+1} = b$ is an n-surface.
 - c) Find the length of the parametrized curve $\alpha : [0, 2\pi] \to \mathbb{R}^3$ defined by $\alpha(t) = (\sqrt{2}\cos 2t, \sin 2t, \sin 2t)$.

P.T.O.

[3721] - 202

Max. Marks : 80

6

5

6

5

[3721] - 202

3. a) The 1-sheeted hyperboloid H is defined as

$$-\frac{x_1^2}{a^2} + x_2^2 + \dots + x_{n+1}^2 = 1 (a > 0).$$

What happens to the spherical image of H when $a \rightarrow \infty$? When $a \rightarrow 0$? **6**

b) Let $\{e_1, e_2\}$ be a pair of orthogonal unit vectors in \mathbb{R}^3 , and $a \in \mathbb{R}$. Prove that $\alpha(t) = (\cos at)e_1 + (\sin at)e_2$ is a geodesic in the 2-sphere $x_1^2 + x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 .

c) Find the curvature k of the oriented plane curve $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$, $a \neq 0$, $b \neq 0$. 6

4. a) Let S be a 2-surface in ℝ³ and let α : I → S be a geodesic in S with α ≠ 0.
Prove that a vector field X tangent to S along α is parallel along α if and only if both || X || and the angle between X and α are constant along α.

b) Compute the Weingarten map for the circular cylinder $x_2^2 + x_2^3 = a^2$ in \mathbb{R}^3 ($a \neq 0$).

- c) Define:
 - i) Gauss-Kronecker curvature
 - ii) Mean curvature.
- 5. a) Let S be an n-surface in ℝⁿ⁺¹, oriented by the unit normal vector field N. Let p∈ S and v∈ S_p. For every parametrized curve α: I → S, with α(t₀) = v for some t₀ ∈ I prove that α(t₀) · N(p) = L_p(v) · v.
 - b) Find the normal curvature k(v) for each tangent direction v at the given point p = (1, 0, ..., 0) of the given n-surface $x_1 + x_2 + ... + x_{n+1} = 1$ oriented by $\frac{\nabla f}{\|\nabla f\|}$. 6
 - c) Let S be an n-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. If f is smooth then prove that $f \circ \phi: U \to \mathbb{R}^k$ is smooth for each local parametrization $\phi: U \to S$. 4

6

4

4

6

6

4

- 6. a) Let V be a finite dimensional vector space with dot product and let L : V → V be a self-adjoint linear transformation on V. Prove that there exists an orthonormal basis for V consisting of eigenvectors of L.
 - b) Let a > b > 0 and define $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ by

$$\varphi(\theta, \phi) = ((a + b\cos\phi)\cos\theta, (a + b\cos\phi)\sin\theta, b\sin\phi).$$

Show that $\boldsymbol{\varphi}$ is a parametrized 2-surface in \mathbb{R}^3 .

c) For each a, b, c, $d \in \mathbb{R}$, prove that the parametrized curve $\alpha(t) = (\cos(at + b), \sin(at + b), ct + d)$

is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 .

- 7. a) Let $\phi: U \to \mathbb{R}^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Prove that there exists an open set $U_1 \subset U$ about p such that $\phi(U_1)$ is an n-surface in \mathbb{R}^{n+1} .
 - b) Sketch the level set $f^{-1}(0)$ and typical values $\nabla f(p)$ of the vector field for $p \in f^{-1}(0)$, when $f(x_1, x_2) = x_1^2 + x_2^2 1$. 6
- 8. a) Find the Gaussian curvature of the parametrized 2-surface

$$\varphi(\theta, \phi) = ((a + b\cos\phi)\cos\theta, (a + b\cos\phi)\sin\theta, b\sin\phi) \text{ in } \mathbb{R}^3.$$

- b) Let U be an open set in \mathbb{R}^{n+1} , let $f: U \to \mathbb{R}$ be a smooth function, and let $\alpha: I \to U$ be an integral curve of ∇f . Show that $\frac{d}{dt}(f \circ \alpha)(t) = \|\nabla f(\alpha(t))\|^2, \forall t \in I.$
- c) Sketch the surface of revolution obtained by rotating C about the x_1 axis, where C is the curve $x_2 = 1$.

B/I/10/625

5

M.A./M.Sc. (Semester – I) (2008 Pattern) Examination, 2010 MATHEMATICS MT-504: Number Theory

Time : 3 Hours

N.B.: 1) Attempt any five questions.2) Figures to the right indicate full marks.

 a) If g is the greatest common divisor of b and c, then prove that there exist integers x₀ and y₀ such that g = (b,c) = bx₀ + cy₀. b) Prove that if x and y are odd then x² + y² is even, but not divisible by 4. c) Show that n⁴+n²+1 is composite if n >1. 	6 5 5
 2. a) Prove that if (a, m) =1, then a^{φ(m)} = 1 (mod m). b) What is the last digit in the ordinary decimal representation of 3⁴⁰⁰? c) Show that 2,4,6,,2 m is a complete residue system modulo m if m is odd. 	6 5 5
 3. a) Let p denote a prime. Prove that x² ≡-1 (mod p) has solutions if and only if p=2 or p ≡1 (mod 4). b) Find all integers that give the remainders 1,2,3 when divided by 3,4,5 respectively. c) Find all integers x and y such that 147 x + 258 y =369. 	8 4 4
 4. a) Prove that for every positive integer n, Σ_{d n} φ(d) = n. b) Find the highest power of 70 that divides 533 ! c) i) Prove that μ (n) μ(n+1)μ (n+2)μ (n+3)= 0 if n is a positive integer. 	6 4
ii) Evaluate $\sum_{j=1}^{\infty} \mu(j!)$	6

[3721] - 104

5. a) Prove that, if p and q are distinct odd primes, then

$$\left(\frac{\mathbf{p}}{\mathbf{q}}\right)\left(\frac{\mathbf{q}}{\mathbf{p}}\right) = \left(-1\right)^{\left\{\left(\mathbf{p}-1\right)/2\right\}\left\{\left(\mathbf{q}-1\right)/2\right\}}.$$
6

b) Find the value of
$$\left(\frac{a}{p}\right)$$
 in each of the 12 cases, $a = -1, 2, -2, 3$ and $p = 11, 13, 17$. **6**

c) Find the value of
$$\left(\frac{-42}{61}\right)$$
. 4

- 6. a) Prove that the product of two primitive polynomials is primitive. 6
 - b) Prove that among the rational numbers, the only ones that are algebraic integers are the integers $0, \pm 1, \pm 2, \dots$ (i.e.Z/).
 - c) Find the minimal polynomial of the algebraic number $\frac{(1+\sqrt[3]{7})}{2}$.
- 7. a) Prove that if α is any algebraic number, then there is a rational integer b such that $b\alpha$ is an algebraic integer.
 - b) For any algebraic number α , define m as the smallest positive rational integer such that $m\alpha$ is an algebraic integer. Prove that if $b\alpha$ is an algebraic integer, where b is a rational integer, then m|b.
 - c) Prove that $\sqrt{3} 1$ and $\sqrt{3} + 1$ are associates in $Q(\sqrt{3})$.
- 8. a) Let m be a negative square-free rational integer. Prove that the field $Q(\sqrt{m})$ has units ± 1 , and these are the only units except in the cases m= -1 and m = -3. Prove that if m = -1 then units are ± 1 and $\pm i$ where as if m= -3 then units are

$$\pm 1, \frac{(1 \pm \sqrt{-3})}{2}$$
 and $\frac{(-1 \pm \sqrt{-3})}{2}$. 8

- b) If α and $\beta \neq 0$ are integers in $Q(\sqrt{m})$, and if $\alpha |\beta$, Prove that $\overline{\alpha} |\overline{\beta}$ and $N(\alpha)|N(\beta)$.
- c) Prove that 1 + i is a prime in Q (i)

5

5

6

6

4

5

M.A.M.Sc. (Semester - III) (2008 Pattern) Examination, 2010 **MATHEMATICS** (Optional) MT-703: Mechanics (New)

Time : 3 Hours

	N.B.: i) Attempt any five questions. ii) Figures to the right indicate full marks.	
1. a	a) If the forces acting on a particle are conservative, show that the total energy is conserved.	5
ł	b) Use D'Alembert's principle to determine the equation of motion of a simple pendulum.	5
(c) A particle of mass m moves in xy plane with position vector $\overline{\Sigma} = i a \cos wt + j b \sin wt$, where a, b and w are positive constants and $a > b$. Show that	
	i) Particle moves in ellipse	
	ii) The force acting on the particle is always directed towards the origin.	
	iii) The force field is conservative.	6
2. a	a) Classify constraints with suitable examples.	5
ł	b) Derive Lagrange's equation of motion from Hamilton's principle.	5
C	c) A particle of mass m moves in a plane under the action of a conservative force f with components.	
	$F_x = -k^2 (2x + y), F_y = -k^2(x + 2y),$	
	where k is a constant. Find the total energy of the motion, the Lagrangian and	

igrang the equation of motion of the particle. 6

P.T.O

[3721] - 303

Max. Marks: 80

3. a) Find the Euler-Lagrange differential equation satisfied by twice differentiable function y(x) which extremizes the functional

-2-

$$I(y(x)) = \int_{x_1}^{x_2} f(x, y, y^1) dx,$$

where y is prescribed at the end points.

b) If L is a Lagrangian for a system of n degree of freedom satisfying the Lagrangian equations, then show that

$$L^1 = L + \frac{df(q_jt)}{dt}$$
, j = 1.2, ... n

also satisfies the Lagrangian equation, where f is any arbitrary, but differential function of its arguments.

- c) Show that the curve is a catenary for which the area of surface of revolution is minimum when revolved about y -axis.
- 4. a) Reduce the two body problem to one body problem in central force motion of two bodies about their centre of mass.
 - b) Derive the viral theorem, if the forces are derivable from a potential and

show that
$$\overline{T} = \frac{n+1}{2}\overline{V}$$
. 5

- c) Find the shape of the plane curve of fixed length *l* whose end points lie on the x-axis and area enclosed by it and the x-axis is maximum.
- 5. a) Define orthonormal transformation. Show that finite rotation of a rigid body about a fixed point of the body is not commutative.
 - b) Define Eulerian angles. Find the matrix of transformation from a space set of axes to body set of axes interms of Eulerian angles.6
 - c) Obtain the Euler's equations for motion of a rigid body when one point of the body remains fixed.

6

5

5

6

5

5

6. a) Derive Hamilton's principle for non-conservative system from D'Alembert's principle and hence deduce from it the Hamilton's principle for conesrvative system.

-3-

- b) Deduce Newton's second law of motion from Hamilton's principle.
- c) A particle of mass m is moving on the surface of the sphare of radius r in the gravitational field. Use Hamilton's principle to show the equation of motion is given by

$$\ddot{\theta} - \frac{p_{\phi} \cos \theta}{m^2 r^4 \sin^3 \theta} + \frac{g}{r} \sin \theta = 0,$$

where p_{Φ} is the constant of angular momentum.

- 7. a) Define Posson's bracket and show that it is invariant under canonical transformation.
 - b) If A is the matrix of a rotation through 180° about any axis. Show that if

$$P_{\pm} = \frac{1}{2} (1 \pm A), P_{\pm}^2$$
 then $= P_{\pm}$. Obtain the elements of P_{\pm} in any system. 6

c) Derive with usual notation

$$\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{u},\mathrm{v}] = \left[\frac{\mathrm{du}}{\mathrm{dt}},\mathrm{v}\right] + \left[\mathrm{u},\frac{\mathrm{dv}}{\mathrm{dt}}\right]$$

- 8. a) Define and explain the following terms :
 - i) Degree of freedom
 - ii) Generalized momentum
 - iii) Virtual work
 - b) Find the kinetic energy of rotation of a rigid body with respect to the principal axes in terms of Eulerian angles.

5

6

6

5

4

6

-4-

c) For a particle the kinetic energy and potential energy is given by

$$T = \frac{1}{2}m\dot{r}^{2}$$
$$V = \frac{1}{r}\left(1 + \frac{\dot{r}^{2}}{C^{2}}\right)$$

Find the Hamiltonian H and determine

1) Whether H = T + V

2) Whether
$$\frac{dH}{Dt} = 0$$

M.A/M.Sc. (Semester – III) (2004 Pattern) Examination, 2010 MATHEMATICS MT-703: Functional Analysis (Old)

Time : 3 Hours

Instructions : i) Attempt **any five** questions. *ii)* Figures to the **right** indicate **full** marks.

- 1. a) i) Define normed linear space.
 - ii) In normed linear space show that
 - A) $|||x|| ||y||| \le ||x-y||;$
 - B) addition and scalar multiplication are jointly continuous on N.
 - b) Give one example of Banach space with explanation. Is \mathbb{R}^n , a Banach space with the norm defined by

$$||\mathbf{x}|| = \left(\sum_{i=1}^{n} |\mathbf{x}_{i}|^{2}\right)^{\frac{1}{2}}$$
?

Justify your steps.

- 2. a) Let M be a closed linear subspace of a normed linear space N, and let x_0 be a vector not in M, then prove that there exists a functional f_0 in N* such that $f_0(M) = 0$ and $f_0(x_0) \neq 0$.
 - b) Let N and N' be normed linear spaces and T a linear transformation of N into N'. Prove that the following conditions on T are all equivalent to one another :
 - i) T is continuous;
 - ii) T is continuous at the origin;
 - iii) T is bounded on N;
 - iv) If S is the closed unit sphere in N, then its image T(S) is a bounded set in N'.
 - c) True/ False ? Justify your answer.If N is complete, then N is reflexive.

Max. Marks : 80

8

8

6

8

2

[3721] – 303

State and prove the uniform boundedness theorem.	6
) If N is a normed linear space, then prove that N is naturally imbedded into N **.	8
If N is a Banach space, then prove that $S = \{x x = 1\}$ is complete.	2
Define Hilbert space and give one example of Hilbert space with explanation.	6
) State and prove the parallelogram law.	4
Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.	6
If N is a normal operator on a Hilbert space H, then prove that $ N^2 = N ^2$.	4
the following conditions are all equivalent to one another :	
ii) $x \perp \{e_i\} \implies x = 0$	
iii) If x is an arbitrary vector in H, then $x = \sum (x, e_i) e_i$	
iv) If x is an arbitrary vector in H, then $ x ^2 = \sum_{i} (x,e_i) ^2$.	8
Show that the difference $P = P_1 - P_2$ of two projections on a Hilbert H is a projection on H if and only if $P_1 \le P_2$.	4
Prove that an operator T on a Hilbert space H is unitary if and only if it is an isometric isomorphism of H onto itself.	6
) If A is a positive operator on a Hilbert space H, then prove that I+ A is non singular.	6
properties :	4
) If N is a Banach space, then prove that S = {x x = 1} is complete.) Define Hilbert space and give one example of Hilbert space with explanation.) State and prove the parallelogram law.) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.) If N is a normal operator on a Hilbert space H, then prove that N² = N ².) Let H be a Hilbert space, and let {e_i} be an orthonormal set in H. Prove that the following conditions are all equivalent to one another : i) {e_i} is complete ii) x ⊥ {e_i} ⇒ x = 0 iii) If x is an arbitrary vector in H, then x = ∑(x, e_i)e_i iv) If x is an arbitrary vector in H, then x ² = ∑ (x, e_i) ².) Show that the difference P = P₁ - P₂ of two projections on a Hilbert H is a projection on H if and only if P₁ ≤ P₂.) Prove that an operator T on a Hilbert space H is unitary if and only if it is an isometric isomorphism of H onto itself.) If A is a positive operator on a Hilbert space H, then prove that I+ A is non singular.

-6-

ii) $||T^*|| = ||T||$.

7. a)	With usual notations prove that $(l_1^n)^* = l_{\infty}^n$.	6
b)	Consider the operator T defined on l_2 by	
	T $(x_1, x_2, x_3, x_4 \dots) = (0, x_1, x_2, x_3, x_4 \dots)$.	
	Is T unitary ? Why ?	4
c)	Let y be a fixed vector in a Hilbert space H, and consider the function f_y defined on H by $f_y(x) = (x, y)$. Prove that f_y is a linear transformation, and $ f_y = y $.	6
8. a)	If T is a normal operator on a Hilbert space H, then prove that M'_i s are pairwise orthogonal.	4
b)	If T is a normal operator on a Hilbert space H, then prove that each M_i reduces T.	4
c)	Let T be an operator on H, and prove the following statements :	
	i) T is singular if and only if $0 \in \sigma \{T\}$;	
	ii) If A is non singular, then σ (ATA ⁻¹) = σ (T).	8

-7-

B/I/10/290