M.A./M.Sc. (Mathematics) (2005 Pattern) Examination, 2010 MT 706 : NUMERICAL ANALYSIS (OId)

Time : 3 Hours
Max. Marks : 80
N.B.: i) Attempt any five questions.
ii) Figures to the right indicate full marks.
iii) Use of non-programmable scientific calculators is allowed.

1. a) Determine the order of approximation for the sum and product of the expansions;

$$
\begin{align*}
& e^{h}=1+h+\frac{h^{2}}{2!}+\frac{h^{3}}{3!}+o\left(h^{4}\right) \text { and } \\
& \cosh =1-h^{2} / 2!+\frac{h^{4}}{4!}+o\left(h^{6}\right) \tag{8}
\end{align*}
$$

b) Investigate the nature of the iteration $p_{n+1}=g\left(p_{n}\right)$ for the function

$$
g(x)=1+x-\frac{x^{2}}{4}
$$

2. a) Perform four iterations of bisection method to solve $x \sin x=1$ on [0, 2].
b) Suppose Newton-Raphson iteration produces a sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ that converges to the multiple root P of order M of $f(x)$. Then prove that the convergence is linear.
3. a) For the linear system

$$
\begin{aligned}
& x^{2}-y-0.2=0 \\
& y^{2}-x-0.3=0
\end{aligned}
$$

start with $\left(\mathrm{p}_{0}, \mathrm{q}_{0}\right)=(1.2,1.2)$ and use Newton's method to compute $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(p_{2}, q_{2}\right)$.
b) Find the triangular factorization $\mathrm{A}=\mathrm{LU}$ for the matrix.
$\left[\begin{array}{rrrr}1 & 1 & 0 & 4 \\ 2 & -1 & 5 & 0 \\ 5 & 2 & 1 & 2 \\ -3 & 0 & 2 & 6\end{array}\right]$
4. a) Solve the following system by Gauss-Seidel method.
$4 x-y+z=7$
$4 x-8 y+z=-21$
$-2 x+y+5 z=15$$\{$ start with $(1,2,2)$ and perform two iterations.
b) Prove that the Jacobi iterations converge to the solution of the linear system $\mathrm{Ax}=\mathrm{b}$ starting with any initial vector $\mathrm{x}^{(0)}$ provided that the matrix A is strictly diagonally dominant.
5. a) Let $f(x)=8 x / 2^{x}$. Use cubic Lagrange interpolation based on the nodes $x=0,1,2,3$, to approximate $f(7.5)$. Compare with true value.
b) Construct a divided difference table for $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ based on the five nodes $x=0,1,2,3,4$. Hence find $P_{2}(1.5)$.
6. a) Use Taylor expansions and derive the central-difference formula :
$f^{\prime}(x)=(f(x+h)-f(x-h)) / 12 h$.
b) Use the numerical differentiation formula $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)=\left[-\mathrm{f}_{2}+16 \mathrm{f}_{1}-30 \mathrm{f}_{0}+16 \mathrm{f}_{-1}-\mathrm{f}_{-2}\right] / 12 \mathrm{~h}^{2}$, and $\mathrm{h}=0.1$ to approximate $f^{\prime \prime}(1)$ for the function $f(x)=x^{6}$. Compare with true value.
7. a) Derive Trapezoidal rule for numerical integration and hence find the value of π by evaluating $\int_{0}^{1} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$.
b) Determine the degree of precision of the Simpson's $3 / 8$ rule.
8. a) Use Runge-Kutta method RK4 and compute the numerical solution of the system
$\frac{d x}{d t}=x+2 y$
$\frac{d y}{d t}=3 x+2 y$ with $\left\{\begin{array}{l}x(0)=6 \\ y(0)=4,\end{array}\right.$
at $\mathrm{t}=0.02$.
b) For any fixed θ, show that
$R=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is an orthogonal matrix.
4
c) Construct Householder matrix P for $w=[0,0,1]^{T}$.

M.A./M.Sc. Examination, 2010
 MATHEMATICS
 MT 807 : Combinatorics (Old) (2005 Pattern)

Time : 3 Hours

Max. Marks : 80
N.B.: 1) Attempt any five questions.
2) Figures to the right indicate full marks.

1. A) What is the number of ways that a five card hand has:
i) each of the four values Ace, King, Queen and Jack ?
ii) the same number of hearts and spades?
B) How many arrangements of $5 \alpha^{\prime} \mathrm{s}, 5 \beta^{\prime} \mathrm{s}$ and $5 \gamma^{\prime} \mathrm{s}$ are there with atleast one β and atleast one γ between each successive pair of α^{\prime} s?
C) Prove the following binomial identity using combinatorial argument

$$
\begin{equation*}
\binom{n}{0}+\binom{n+1}{1}+\ldots+\binom{n+r-1}{r-1}+\binom{n+r}{r}=\binom{n+r+1}{r} . \tag{4}
\end{equation*}
$$

2. A) If there are n-objects with r_{1} of type $1, r_{2}$ of type $2, \ldots, r_{m}$ of type m, where $r_{1}+r_{2}+\ldots+r_{m-1}+r_{m}=n$, then the number of arrangements of these n objects denoted by $\mathrm{P}\left(\mathrm{n} ; \mathrm{r}_{1}, \mathrm{r}_{2}, \ldots \mathrm{r}_{\mathrm{m}}\right)$. Prove by mathematical induction that

$$
P\left(n ; r_{1}, r_{2}, \ldots, r_{m}\right)=\binom{n}{r_{1}} \cdot\binom{n-r_{1}}{r_{2}} \cdot\binom{n-r_{1}-r_{2}}{r_{3}} \ldots\binom{n-r_{1} \ldots \ldots . r_{m-1}}{r_{m}}=\frac{n!}{r_{1}!r_{2}!\ldots r_{m}!\cdot 6}
$$

B) How many integer solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=12$, with $x_{i} \geq 0$? How many solutions with $x_{i} \geq 1$? How many solutions with $x_{1} \geq 2$, $x_{2} \geq 2, x_{3} \geq 4, x_{4} \geq 0$?
C) Find the number of ways to get 25 rupees from 10 distinct people, if a person can give either 3 rupees, 8 rupees or none, using generating function.

|||||||||||||||||||||||||||||||

3. A) Explain why $\left(1+x+x^{2}+x^{3}+x^{4}\right)^{r}$ is not a proper generating function for the number of ways to distribute r-jelly beans among r-children with no child getting more than four jelly beans.
B) Show with generating functions that every positive integer can be written as a unique sum of distinct powers of 2 .
C) Show that the number of partitions of an integer r as a sum of m positive integers is equal to the number of partitions of r , as a sum of positive integers, the largest of which is m .
4. A) Using exponential generating function find how many r-digit quaternary sequences are there in which the total number of 0 's and 1 's is even?
B) Build a generating function using summation method for $\mathrm{a}_{\mathrm{r}}=(\mathrm{r}+1) \mathrm{r}(\mathrm{r}-1)$.
C) Find the number of 7-bead necklaces distinct under rotations using three black and four white beads.
5. A) State and prove Burnside's Theorem.
B) Suppose we draw n-straight lines on a piece of paper so that every pair of lines intersect (but no three lines intersect at a common point). Use recurrence relation and find into how many regions do these n lines divide the plane.
6. A) State and prove the Inclusion-Exclusion Formula.
B) How many different 3 -colorings of the bands of an n band baton are there if baton is unoriented?
C) Solve the following recurrence relation

$$
a_{n}=a_{n-1}+3(n-1), a_{0}=1 .
$$

7. A) Using Inclusion-Exclusion theorem, find the number of n digit ternary sequences with atleast one 0 , atleast one 1 and atleast one 2 .
B) How many ways are there to color the four vertices in the graph shown below with n colors such that vertices with a common edge must be different colors?

C) Find the rook polynomial for the following figure.

8. A) Find the pattern inventory of black-white edge colorings of a tetrahedron.
B) How many arrangements of the letters a, e, i, o, $u, x, x, x, x, x, x, x, x\left(8 x^{\prime} s\right)$ are there if no two vowels can be consecutive?
C) Find the number of different r -arrangements of objects chosen from unlimited supplies on n types of objects, using exponential generating function.

M.A./M.Sc. (Semester - I) Examination, 2010
 MATHEMATICS (2008 Pattern)
 MT : 501 : Real Analysis - I

Time: 3 Hours
Max. Marks: 80

N.B. : 1) Attempt any five questions.
 2) All questions carry equal marks.

1. a) State and prove Cauchy-Schwarz's inequality. $\mathbf{6}$
b) Show that the set of rational numbers is countable.
c) Suppose A is any set and $P(A)$ is its power set. Is any map $F: A \rightarrow P(A)$ onto ? Justify.
2. a) Show that $\mathrm{d}(\mathrm{x}, \mathrm{y})=\frac{|\mathrm{x}-\mathrm{y}|}{1+|\mathrm{x}-\mathrm{y}|}$ defines a metric on $(0, \infty)$.
b) Give an example of a sequence $\left\{\mathrm{f}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ of non-negative measurable functions on A , where $\mathrm{A} \in \mathrm{M}$ and $\mathrm{f}=\lim _{\mathrm{k} \rightarrow \infty} \inf \mathrm{f}_{\mathrm{k}}$ on A such that $\int_{\mathrm{A}} \mathrm{fdm}<\lim _{\mathrm{k} \rightarrow \infty} \inf \int_{\mathrm{A}} \mathrm{f}_{\mathrm{k}} \mathrm{dm} . \quad 5$
c) Show that compact subsets of a metric space are closed.
3. a) Let $\mathrm{A} \subset(\mathrm{M}, \mathrm{d})$ then prove that $\mathrm{x} \in \overline{\mathrm{A}}$ iff $\mathrm{B}_{\epsilon}(\mathrm{x}) \cap \mathrm{A} \neq \phi$ for every $\in>0$.
b) Is Cantor set compact? What is its interior? Explain.
c) With usual notations, show that, $\mathrm{L}^{\mathrm{p}}(\mu)$ is a linear space where $1 \leq \mathrm{p}<\infty$.
4. a) Define a measurable function on \mathbb{R}^{n} and show that following statements are equivalent.
i) $\{x / f(x)>a\}$ is measurable for every $a \in \mathbb{R}$
ii) $\{x / f(x) \geq a\}$ is measurable for every $a \in \mathbb{R}$
iii) $\{x / f(x)<a\}$ is measurable for every $a \in \mathbb{R}$
iv) $\{x / f(x) \leq a\}$ is measurable for every $a \in \mathbb{R}$
b) Find limit points of \mathbb{Q} and $\left\{\frac{1}{n}\right\}$ where $n \in \mathbb{N}$.

4
c) Show that \mathbb{R} with discrete metric space is not separable.

4
5. a) State and prove Monotone Convergence Theorem.

5
b) Draw the following graphs in \mathbb{R}^{2}.
i) $\left\{\|u\|_{1}<1\right\}$
ii) $\left\{\|u\|_{2}<1\right\}$
iii) $\left\{\|\mathrm{u}\|_{\infty}<1\right\}$ for $\mathrm{u} \in \mathbb{R}^{2}$.
c) Show that $\sigma:[0,1] \rightarrow[a, b]$ defined by $\sigma(t)=a+t(b-a)$ is homeomorphism and $\mathrm{f} \in \mathrm{C}[\mathrm{a}, \mathrm{b}]$ if $\mathrm{f}_{0} \sigma \in \mathrm{C}[0,1]$.
6. a) State and prove Holder's inequality.
b) Show that a Riemann integrable function is also a Lebesgue integrable.
c) Suppose $\left\{\mathrm{F}_{\mathrm{n}}\right\}$ is a decreasing sequence of non-empty closed sets in a complete space (M, d), with $\operatorname{diam} \mathrm{F}_{\mathrm{n}} \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$ then show that $\bigcap_{\mathrm{n}=1}^{\infty} \mathrm{F}_{\mathrm{n}} \neq \phi$.
7. a) Show that $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin m x}{\sqrt{\pi}}\right\}$ where $n, m \in \mathbb{N}$ forms an orthonormal set in $L^{2}([-\pi, \pi])$.
b) Show that (M, d) is compact then every open cover of M has a finite subcover.
c) State Banach contraction principle.
8. a) Show that any non-empty complete metric space is of second category.
b) State and prove Arzela-Ascoli Theorem.
c) Show that evey continuous function is measurable.2

M.A./M.Sc. (Semester - I) Examination, 2010
 MATHEMATICS (2008 Pattern)
 MT-502 : Advanced Calculus

Time : 3 Hours
Max. Marks : 80
N.B. : 1) Attempt any five questions.
2) Figures to the right indicate full marks.
3) Notation: $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ denote standard basis for \mathbb{R}^{n}.

1. a) Assume that $f: S \subset I R^{n} \longrightarrow I R$ is differentiable scalar field at a point \vec{a} in $\operatorname{Int} S$ with total derivative $T_{\bar{a}} ;$ Then prove that $f^{\prime}(\vec{a} ; \vec{y})$ exists for every $\vec{y} \in \mathbb{R}^{n}$.
b) Let $\vec{f}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a vector field, and let $\vec{f}(\vec{x})=f_{1}(\vec{x}) \vec{e}_{1}+\ldots+f_{m}(\overrightarrow{\mathrm{x}}) \vec{e}_{m}$, where $f_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}, i=1,2, \ldots, m$ are scalar fields. Then prove that \vec{f} is continuous if and only if component function f_{i} is continuous.
c) Let $\overrightarrow{\mathrm{f}}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ and $\overrightarrow{\mathrm{g}}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be two vector fields defined as :
$\vec{f}(x, y)=e^{x+2 y} \vec{e}_{1}+\sin (y+2 x) \vec{e}_{2}$ and
$\overrightarrow{\mathrm{g}}(\mathrm{u}, \mathrm{v}, \mathrm{w})=\left(u+2 \mathrm{v}^{2}+3 \mathrm{w}^{3}\right) \vec{e}_{1}+\left(2 \mathrm{v}-\mathrm{u}^{2}\right) \vec{e}_{2}$.
Compute $\operatorname{Dh}(1,-1,1)$, where $\overrightarrow{\mathrm{h}}=\overrightarrow{\text { fog }} \vec{g}$.
2. a) If \vec{f} is a vector field, show that \vec{f} is differentiable at \vec{a} then it is continuous at \vec{a}.
b) Find the directional derivative of the scalar field $f(x, y)=x^{2}-3 x y$ along the parabola $y^{2}=x^{2}-x+2$ at the point $(1,2)$.
c) State and prove chain rule for derivatives of vector fields.
3. a) Define line integral of a vector field along the curve. Illustrate by an example that line integral is independent of the path along a curve joining the two points.
b) Give an example of a vector field $\vec{f}(x, y)$ defined on a open set $S \subset \mathbb{R}^{n}$ such that $D_{1} \overrightarrow{\mathrm{f}}_{2}=\mathrm{D}_{2} \overrightarrow{\mathrm{f}}_{1}$ but $\overrightarrow{\mathrm{f}}$ is not gradient on S .
4. a) Prove that the line integral of a continuous gradient is zero around every piecewise smooth closed path in an open connected set S in \mathbb{R}^{n}.
b) i) Evaluate $\int_{C} \frac{(x+y) d x-(x-y) d y}{x^{2}+y^{2}}$, where C is the circle $x^{2}+y^{2}=4$ traversed in a counter clockwise direction.
ii) Let $\vec{f}(x, y)=\frac{-y}{x^{2}+y^{2}} \vec{e}_{1}+\frac{x}{x^{2}+y^{2}} \vec{e}_{2}$ for $(x, y) \neq(0,0)$. Show that $\int_{C} \vec{f}(x, y)$ is not zero, where C is the circle of radius a >0 with center at origin.
5. a) Prove that a continuous function f on a rectangle Q is integrable on Q.
b) Evaluate $\iint_{\mathrm{Q}} \mathrm{xy}(\mathrm{x}+\mathrm{y}) \mathrm{dxdy}$, where $\mathrm{Q}=[0,1] \times[0,1]$.
c) Evaluate $\iint_{Q} \sin ^{2} x \sin ^{2} y d x d y$, where $Q=[0, \pi] \times[0, \pi]$.
6. a) State Green's theorem for plane region and verify it by an example.
b) Evaluate $\iiint_{S} x y z d x d y d z$, where

$$
\mathrm{S}=\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 1, \mathrm{x} \geq 0, \mathrm{y} \geq 0, \mathrm{z} \geq 0\right\}
$$

c) State only the general formula for change of variables in double integrals and explain the terms involved.
7. a) Define surface integral and explain the terms invovled in it.
b) Let $x^{2}+y^{2}+z^{2}=1$ be a sphere of radius one. Find the fundamental vector product in explicit form of this sphere. Also discuss the singular points of this surface.
c) If $\vec{r}(u, v)=\left(x_{0}+a_{1} u+b_{1} v\right) \vec{e}_{1}+\left(y_{0}+a_{2} u+b_{2} v\right) \vec{e}_{2}+\left(z_{0}+a_{3} u+b_{3} v\right) \vec{e}_{3}$, find $\frac{\partial \vec{v}}{\partial u}+\frac{\partial \vec{v}}{\partial v}$ in terms of u and v.
8. a) State and prove divergence theorem.
b) Show that curl $(\operatorname{grad} \phi)=0$.
c) Use transformation formula to transform the integral $\iiint_{S} f(x, y, z) d x d y d z$, where S is sphere of radius a by using $x=\rho \cos \theta \cos \phi$, $y=\rho \sin \theta \cdot \cos \phi, z=\rho \sin \phi$.

M.A./M.Sc. (Semester - I) Examination, 2010
 MATHEMATICS (2008 Pattern)
 MT 503 : Linear Algebra

Time : 3 Hours
Max. Marks : 80

Instructions : 1) Answer any five questions.
2) Figures to the right indicate full marks.

1. a) Let V be a finite dimensional vector space over K , and let X and Y be finite subsets of V . If Y is linearly independent and $\mathrm{V}=\langle\mathrm{X}\rangle$, prove that $|\mathrm{Y}| \leq|\mathrm{X}|$
b) Let V and V^{\prime} be finite dimensional vector spaces over K . Prove that $\mathrm{V} \simeq \mathrm{V}^{\prime}$ if only if $\operatorname{dim} V=\operatorname{dim} V^{\prime}$.
c) If X and Y are subspaces of a vector space V such that V / X and V / Y and finite dimensional, prove that the quotient space $\mathrm{V} /(\mathrm{X} \cap \mathrm{Y})$ is also finite dimensional.
2. a) Let $V_{1}, \ldots . . \mathrm{V}_{\mathrm{m}}$ be vector spaces over a field K . Prove that $\mathrm{V}=\mathrm{V}_{1} \oplus \ldots . . \oplus \mathrm{V}_{\mathrm{m}}$ is finite dimensional if and only if each V_{i} is finite dimensional.
b) Let D be the differential operator on $\mathbb{R}_{3}[x]$, write the matrix representation of D with respect to the ordered basis $\left\{1+\mathrm{x}, \mathrm{x}+\mathrm{x}^{2}, \mathrm{x}^{2}+\mathrm{x}^{3}, \mathrm{x}+\mathrm{x}^{3}\right\}$.
c) Prove that the geometric multiplicity of an eigenvalue of a linear operator cannot exceed its algebraic multiplicity.
3. a) Let B be an ordered basis of an n-dimensional vector space V over K. If S and T are linear operators on V, Prove that $\left[S_{0} T\right]_{B}=[S]_{B}[T]_{B}$ and T is a bijection if and only if $[\mathrm{T}]_{\mathrm{B}}$ is an invertible matrix.
b) Let V be a finite dimensional vector space over K and let T be a linear operator on V . If X and Y are T - invariant subspaces of V and $\mathrm{V}=\mathrm{X} \oplus \mathrm{Y}$, prove that X° and Y° are T°-invariant subspaces of V° and $\mathrm{V}^{\circ}=\mathrm{X}^{\circ} \oplus \mathrm{Y}^{\circ}$.
c) Let K be a field and $\operatorname{let} p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{0}$ be a monic polynomial
of degree n. Let A be an $n \times n$ matrix given by :

4
$A=\left[\begin{array}{cccc}0 & \cdots & 0 & -a_{0} \\ 1 & \cdots & 0 & -a_{1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1-a_{n-1}\end{array}\right]$
Prove that the characteristic polynomial of A is $\mathrm{p}(\mathrm{x})$.
4. a) Let V be a finite dimensional vector space over K of dimension n and let T be a linear operator on V . If $\mathrm{m}_{\mathrm{T}}(\mathrm{x})=\mathrm{p}(\mathrm{x})^{\mathrm{r}}$, where $\mathrm{p}(\mathrm{x})$ is a monic irreducible polynomial of degree m, prove that m divides n.
b) Prove that two diagonalizable linear operators S and T on V are simultaneously diagonalizable if and only if they commute, that is $\mathrm{ST}=\mathrm{TS}$.
c) Prove that a Jordan chain consists of linearly independent vectors.
5. a) Let V be a finite dimensional inner product space and let f be a linear functional on V. Prove that there exists a unique vector x in V such that $f(v)=(v, x)$, for all v in V .
b) Let V and W be finite dimensional inner product spaces and $\operatorname{let} \mathrm{T} \in<(\mathrm{V}, \mathrm{W})$. Prove that there exists a unique linear mapping $\mathrm{T}^{*}: \mathrm{W} \rightarrow \mathrm{V}$ such that for all $v \in V$ and $w \in W,(T v, w)=\left(v, T^{*} w\right)$.
c) Prove that a Jordan subspace for a linear operator T is T-cyclic.
6. a) Prove that a self adjoint operator T on a finite dimensional inner product space V is orthogonally diagonalizable.
b) Let $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \in \mathbb{R}^{333}$ find a polar decomposition of A .
c) Let T be a unitary operator on $\mathrm{V}, \operatorname{dim} \mathrm{V}=\mathrm{n}$. If B_{1} and B_{2} are ordered orthonormal basis of V , prove that ${ }_{\mathrm{B}_{2}}[\mathrm{~T}]_{\mathrm{B}_{1}}$ is a unitary matrix.
7. a) Prove that a bilinear form is reflexive if and only if it is either symmetric or alternating.
b) Let $\mathrm{A}, \mathrm{B} \in \mathrm{K}^{\mathrm{n} \times \mathrm{n}}$. Prove that bilinear spaces $\left(\mathrm{k}^{\mathrm{n}}, \theta_{\mathrm{A}}\right)$ and $\left(\mathrm{k}^{\mathrm{n}}, \theta_{\mathrm{B}}\right)$ are isomorphic if and only if A and B are congruent matrices.
c) Let ϕ be a nondegenerate reflexive bilinear form on a finite dimensional vector space V over K. For a subspace S of V, prove that $S^{\perp \perp}=S$.
8. a) Prove that a symmetric bilinear form on a finite dimensional vector space V over a field K of characteristic not equal to 2 is diagonalizable.
b) Prove that two triangulable $n_{\times} n$ matrices are similar if and only if they have the same Jordan canonical form.
c) Give all possible Jordan canonical forms if the characteristic polynomial is $(x-2)^{3}(x-5)^{2}$.4

M.A./M.Sc. (Semester - I) Examination, 2010
 MATHEMATICS
 MT - 505 : Ordinary Differential Equations (2008 Pattern)

N.B.: 1) Answer any five questions.
2) Figures to the right indicate full marks.

1. a) Find the general solution of $y^{\prime \prime}-y^{\prime}-2 y=4 x^{2}$.
b) If $\mathrm{q}(\mathrm{x})<0$, and if $\mathrm{u}(\mathrm{x})$ is a nontrivial solution of $\mathrm{u}^{\prime \prime}+\mathrm{q}(\mathrm{x}) \mathrm{u}=0$, prove that $\mathrm{u}(\mathrm{x})$ has at most one zero.
c) Let $\mathrm{y}(\mathrm{x})$ and $\mathrm{z}(\mathrm{x})$ be nontrival solutions of $\mathrm{y}^{\prime \prime}+\mathrm{q}(\mathrm{x}) \mathrm{y}=0$ and $\mathrm{z}^{\prime \prime}+\mathrm{r}(\mathrm{x}) \mathrm{z}=0$, where $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ are positive functions such that $\mathrm{q}(\mathrm{x})>\mathrm{r}(\mathrm{x})$. Prove that $y(x)$ vanishes at least once between any two successive zeros of $z(x)$.
2. a) Find the general solution of $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$ in terms of power series
in x.
b) Verify that the origin is a regular singular point and calculate two independent Frobenius series solutions for the equation $4 x y^{\prime \prime}+2 y^{\prime}+y=0$.
c) Are the functions $\phi_{1}(x)=\sin x$ and $\phi_{2}(x)=e^{i x}$ defined on $-\infty<x<\infty$ linearly independent? Why?
3. a) Find the general solution of $\left(2 x^{2}+2 x\right) y^{\prime \prime}+(1+5 x) y^{\prime}+y=0$ near the singular point $\mathrm{x}=0$.
b) Find the general solution of the system

$$
\begin{aligned}
& \frac{d x}{d t}=3 x-4 y \\
& \frac{d y}{d t}=x-y
\end{aligned}
$$

4. a) If a is an arbitrary constant, prove that the system $\frac{d x}{d t}=a x-y, \frac{d y}{d t}=x+a y$ has the origin as only its critical point, find the differential equation of the paths and solve this equation to find the paths.
b) If $a_{1} b_{2}-a_{2} b_{1} \neq 0$, show that the system $\frac{d x}{d t}=a_{1} x+b_{1} y, \frac{d y}{d t}=a_{2} x+b_{2} y$ has infinitely many critical points, none of which are isolated.
c) Show that $y(x)=c_{1} \sin x+c_{2} \cos x$ is the general solution of $y^{\prime \prime}+y=0$ on any interval, and find the particular solution for which $y(0)=2$ and $y^{\prime}(0)=3$.
5. a) Solve the following initial value problem by Picard's method and compare the result with exact solution

$$
\frac{d y}{d x}=2 x(1+y), y(0)=0
$$

b) Show that the function $f(x, y)=x y^{2}$ satisfies a Lipschitz condition on any rectangle $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$ but it does not satisfy a Lipschitz condition on any strip $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and $-\infty<\mathrm{y}<\infty$.
6. a) Let x_{0} be an ordinary point of the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, and let $\mathrm{a}_{0}, \mathrm{a}_{1}$ be arbitrary constants. Prove that there exists a unique function $y(x)$ that is analytic at x_{0}, is a solution of above differential equation in a certain neighbourhood of this point, and satisfies the initial conditions $y\left(x_{0}\right)=a_{0}$ and $y^{\prime}\left(x_{0}\right)=a_{1}$.
b) Find the eigenvalues and eigenfunctions of

$$
y^{\prime \prime}-4 \lambda y^{\prime}+4 \lambda^{2} y=0 ; y^{\prime}(1)=0, y(2)+2 y^{\prime}(2)=0
$$

7. a) Find a recurrence formula and the indicial equation for an infinite series solution around $x=0$ for the differential equation $8 x^{2} y^{\prime \prime}+10 x y^{\prime}+(x-1) y=0$.
b) Solve $y^{(4)}=5 x$ by variation of parameters.
8. a) Find the general solution near $x=0$ of the hypergeometric equation $x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$ where a, b, and c are constants.
b) Let ϕ be any solution of $L(y)=y^{\prime \prime}+a_{1} y+a_{2} y=0$, on an interval I containing a point x_{0}. Prove that for all x in $\mathrm{I}\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{-k\left|x-\mathrm{x}_{0}\right|} \leq\|\phi(\mathrm{x})\| \leq\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|}$. where $\|\phi(x)\|=\left[|\phi(x)|^{2}+\left|\phi^{\prime}(\mathrm{x})\right|^{2}\right]^{1 / 2}, \mathrm{k}=1+\left|\mathrm{a}_{1}\right|+\left|\mathrm{a}_{2}\right|$.

M.A./M.Sc. (Sem. - II) (2008 Pattern) Examination, 2010 MATHEMATICS
 MT 601 : General Topology (New)

Time : 3 Hours
Max. Marks : 80

N.B.: i) Attempt any five questions.
 ii) Figures to the right indicate marks.

1. A) Define a basis for a topology on a set X . Show that the countable collection $B=\{(a, b / a<b, a$ and b are rational $\}$ is a basis that generates the standard topology on \mathbb{R}.
B) Show that the intersection of two topologies on a set X is a topology on X . Show that union of two topologies on X need not be a topology.
C) Let $\pi_{1}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X}$ and $\pi_{2}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{Y}$ be projection maps. Prove that π_{1} and π_{2} are open maps. Further, prove that the collection $\mathrm{S}=\left\{\pi_{1}^{-1}(\mathrm{u}) / \mathrm{U}\right.$ is open in X$\} \cup\left\{\pi_{2}^{-1}(\mathrm{v}) / \mathrm{V}\right.$ is open in Y$\}$ is a sub-basis for the product topology on $\mathrm{X} \times \mathrm{Y}$.
2. A) Define a convex subset Y of an ordered set X. Prove that intervals and rays in X are convex in X, but converse is not true.
B) Let X be a topological space satisfying T_{1} axiom and let A be a subset of X . Prove that the point x is a limit point of A if and only if every neighbourhood of x contains infinitely many points of A.
C) Give an example of a topological space which is not a Hausdorff space. Further, prove that a sequence of points of a Hausdorff space X converges to at most one point of X .
3. A) State and prove the Pasting Lemma. Is the function $f:[0,1] \cup[2,3] \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{cl}x, & \text { if } x \in[0,1] \\ x+1, & \text { if } x \in[2,3]\end{array}\right.$ continuous ?
B) Find the closures of the sets \mathbb{Z}, \mathbb{Q} and $\left\{\mathrm{Y}_{\mathrm{n}} \mid \mathrm{n}=1,2,3, \ldots\right\}$ in \mathbb{R}.

C) Show that the subspace $[\mathrm{a}, \mathrm{b}]$ of \mathbb{R} is homeomorphic with $[0,1]$. Further, show that $[0,1]$ is not homeomorphic with the subspace S^{1} of \mathbb{R}^{2}.

4. A) Prove that the topologies on \mathbb{R}^{2} induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^{2}.
B) Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$ be defined by $\mathrm{F}(\mathrm{t})=(\mathrm{t}, \mathrm{t}, \mathrm{t}, \ldots \ldots)$. Prove that f is not continuous if \mathbb{R}^{W} is given the box topology. 5
C) Give an example of a quotient map which is not a closed map. 5
5. A) Prove that a finite Cartesian product of connected spaces is connected. 6
B) Prove that every path connected space is connected. Is converse true? Justify your answer. 5
C) What are components and path components of \mathbb{R}_{e} ? What are the continuous maps $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}_{\mathrm{e}}$? 5
6. A) Prove that a subspace A of \mathbb{R}^{n} is compact if and only if it is closed and is bounded in the Euclidean metric d or the square metric ρ. 6
B) Show that if Y is compact, then the projection map $\pi_{1}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X}$ is a closed map. 5
C) Let (x, d) be a compact metric space. Let $f: X \rightarrow X$ be a function such that $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$. Show that f is a homeomorphism. 5
7. A) Suppose that X has a countable basis, then prove that every open covering of X contains a countable subcollection covering X. 6
B) Show that \mathbb{R}_{e} and I_{o}^{2} are not metrizable. 5
C) Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous maps. Suppose that Y is Hausdorff. Show that the set $\{x / f(x)=g(x)\}$ is closed in X. 5
8. A) Prove that every metrizable space is normal. 6
B) Prove that a connected regular space having more than one point is uncountable. 5
C) Show that a closed subspace of a normal space is normal. 5

M.A./M.Sc. (Sem. - II) (2004 Pattern) Examination, 2010
 MATHEMATICS
 MT 601 : Real Analysis - II (Old)

Time : 3 Hours

Max. Marks : 80
N.B.:1) Answer any five questions.
2) Figures to the right indicate full marks.

1. a) If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ is of bounded variation, then prove that f is also bounded and satisfies $\|f\|_{\infty} \leq|f(a)|+V_{a}^{b} f$.
b) Prove that $B V[a, b]$ is complete under the norm $\|f\|_{B V}=|f(a)|+V_{a}^{b} f$.
2. a) State Helly's first theorem and prove that $\left\|\mathrm{f}_{1} \mathrm{f}_{2}\right\|_{\mathrm{BV}} \leq\left\|\mathrm{f}_{1}\right\|_{\mathrm{BV}}\left\|\mathrm{f}_{2}\right\|_{\mathrm{BV}}$.
b) Give an example to show that "Every bounded function may not be Riemann - Stieltjes integrable".
3. a) Prove that $C[a, b] \subset R \alpha[a, b]$ for any increasing α.
b) Suppose that α^{\prime} exists and it is a bounded Riemann integrable function on $[a, b]$. Then show that given a bounded function ' f ' on $[a, b]$. We have, $f \in R_{\alpha}[a, b]$ if and only if $f \alpha^{\prime} \in R[a, b]$, in either case $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
4. a) If $f \in R_{\alpha}[a, b]$ with $m \leq f \leq M$, then show that $\int_{a}^{b} f d \alpha=C[\alpha(b)-\alpha(a)]$ for some ' C ' between m and M and also if f is continuous then show that

$$
\begin{equation*}
\mathrm{C}=\mathrm{f}\left(\mathrm{x}_{0}\right) \text { for some } \mathrm{x}_{0} . \tag{8}
\end{equation*}
$$

b) Prove that if $S_{n} \rightarrow S$, then $\sigma_{n} \rightarrow S$.
5. a) Define Lebesgue outer measure and prove the following :
i) $0 \leq \mathrm{m}^{*}(\mathrm{E}) \leq \infty$, for any E.
ii) If $\mathrm{E} \subset \mathrm{F}$, then $\mathrm{m}^{*}(\mathrm{E}) \leq \mathrm{m}^{*}(\mathrm{~F})$.
b) Prove that $m^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} m^{*}\left(E_{n}\right)$ for any sequence $\left(E_{n}\right)$ of subsets of $\mathbb{R} \quad \mathbf{8}$
6. a) State and prove Lebesgue dominated convergence theorem.
b) Let $\left\{E_{n}\right\}$ be the sequence of measurable sets. Then prove that
i) If $E_{n} \subset E_{n+1}$ for each n, then $m\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$.
c) State Vitali's covering theorem.
7. a) Let $E \subset \mathbb{R}$, then prove that E is measurable iff
$m^{*}(A)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{C}\right)$ for every subset A of \mathbb{R}.
b) Let $\left\{f_{n}\right.$) be a sequence (finite or infinite) of measurable functions, then prove that $\operatorname{supf}_{\mathrm{n}}$ and $\inf \mathrm{f}_{\mathrm{n}}$ are measurable functions.
c) State Egorov's theorem.
8. a) State and prove monotone convergence theorem.
b) Give an example of a improper Riemann integrable function which is not Lebesgue integrable.

M.A./M.Sc. Examination, 2010
 MATHEMATICS
 (2008 Pattern and 2004 Pattern
 MT - 604 : Complex Analysis (New and Old)

Time: 3 Hours
Max. Marks : 80
N.B. : 1) Answer any five questions.
2) Figures to the right indicate full marks.
3) \mathbb{C} and \mathbb{C}_{∞} denote complex plane and extended complex plane, respectively.

1. a) If z and z^{\prime} are points in the extended complex plane \mathbb{C}_{∞} and $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$ denote the distance between z and z^{\prime} then derive the expression
$d\left(z, z^{\prime}\right)=\frac{2\left|z-z^{\prime}\right|}{\left[\left(1+|z|^{2}\right)\left(1+\left|z^{\prime}\right|^{2}\right)\right]^{\frac{1}{2}}}$
b) i) For the point $\mathrm{z}=3+2 \mathrm{i}$, give the corresponding point of the unit sphere S in \mathbb{R}^{3}.
ii) Let z and z^{\prime} be points in S (unit sphere in \mathbb{R}^{3}) corresponding to z and z^{\prime} respectively. Let W be the point on S corresponding to $\mathrm{z}+\mathrm{z}^{\prime}$. Find the coordinates of W in terms of the coordinates of z and z^{\prime}.
2. a) For a given power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ define the number $0 \leq R \leq \infty$, by
$\frac{1}{\mathrm{R}}=\lim \sup \left|\mathrm{a}_{\mathrm{n}}\right|^{\frac{1}{n}}$. Prove that
i) If $|z|<R$, the series converges absolutely
ii) If $|z|>R$, the series diverges.
iii) If $0<r<R$ then the series converges uniformly on $\{z:|z| \leq r\}$
b) Find the radius of convergence for each of the following power series
i) $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
ii) $\sum_{n=0}^{\infty} \mathrm{a}^{\mathrm{n}} \mathrm{z}^{\mathrm{n}}, \mathrm{a} \in \mathbb{C}$
P.T.O.
3. a) Prove that if G is open and connected and $\mathrm{f}: \mathrm{G} \rightarrow \mathbb{C}$ is differentiable with $\mathrm{f}^{\prime}(\mathrm{z})=0$ for all z in G then f is constant.
b) i) Show that for any $z,(\cos z)^{\prime}=-\sin z$.
ii) Describe the set $\left\{\mathrm{z}: \mathrm{e}^{\mathrm{z}}=-1\right\}$.
4. a) If z_{2}, z_{3}, z_{4} are distinct points in \mathbb{C}_{∞} and T is any Möbius transformation then prove that $\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}\right)=\left(\mathrm{Tz}_{1}, \mathrm{Tz}_{2}, \mathrm{Tz}_{3}, \mathrm{Tz}_{4}\right)$ for any point z_{1}. Hence prove that a Möbius transformation takes circles onto circles.
b) i) Find the fixed points of a dilation and the inversion on \mathbb{C}_{∞}.
ii) Evaluate the cross ratio $(7+i, 1,0, \infty)$.
5. a) Prove that if a function f is analytic in the open sphere $B(a ; R)$ then $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=\frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence $\geq R$.
b) Evaluate the following integrals
i) $\int_{\gamma} \frac{\sin \mathrm{z}}{\mathrm{z}^{3}} \mathrm{dz}, \gamma(\mathrm{t})=\mathrm{e}^{\mathrm{it}}, 0 \leq \mathrm{t} \leq 2 \pi$;
ii) $\int_{\gamma} \frac{\mathrm{dz}}{\left(\mathrm{z}-\frac{1}{2}\right)^{\mathrm{n}}}$ where n is a positive integer and $\gamma(\mathrm{t})=\mathrm{e}^{\mathrm{it}}, 0 \leq \mathrm{t} \leq 2 \pi$.
6. a) Let G be an open subset of the plane and $f: G \rightarrow \mathbb{C}$ an analytic function. Prove that if γ is a closed rectifiable curve in G such that $\mathrm{n}(\gamma ; \mathrm{w})=0$ for all w in $\mathbb{C}-\mathrm{G}$ then for a in $\mathrm{G}-\{\boldsymbol{\gamma}\}$

$$
\begin{equation*}
\mathrm{n}(\gamma ; \mathrm{a}) \mathrm{f}(\mathrm{a})=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mathrm{f}(\mathrm{z})}{\mathrm{z}-\mathrm{a}} \mathrm{dz} \tag{8}
\end{equation*}
$$

b) i) Let γ be a closed rectifiable curve \mathbb{C} and $\mathrm{a} \notin\{\gamma\}$. Show that for

$$
\mathrm{n} \geq 2 \int_{\gamma}(\mathrm{z}-\mathrm{a})^{-\mathrm{n}} \mathrm{dz}=0
$$

ii) Let $\mathrm{p}(\mathrm{z})$ be a polynomial of degree n and let $\mathrm{R}>0$ be sufficiently large so that p never vanishes in $\{z:|z|>R\}$. If $\gamma(t)=\operatorname{Re}^{i t}, 0 \leq t \leq 2 \pi$, show that

$$
\int_{\gamma} \frac{\mathrm{p}^{\prime}(\mathrm{z})}{\mathrm{p}(\mathrm{z})} \mathrm{dz}=2 \pi \text { in } .
$$

7. a) Let f be analytic in the region G except for the isolated singularities $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$. Prove that if γ is a closed rectifiable curve in G which does not pass through any of the points a_{k} and if $\gamma \approx 0$ in G then

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \mathrm{f}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{n}\left(\gamma ; \mathrm{a}_{\mathrm{k}}\right) \operatorname{Res}\left(\mathrm{f} ; \mathrm{a}_{\mathrm{k}}\right)
$$

b) Let $f(z)=\frac{1}{z(z-1)(z-2)}$; give the Laurent expansion of $f(z)$ in the annuli ann $(0 ; 1,2)$.
c) Show that for $\mathrm{a}>1$,

$$
\int_{0}^{\pi} \frac{d \theta}{a+\cos \theta}=\frac{\pi}{\sqrt{a^{2}-1}} .
$$

8. a) Let G be a region in \mathbb{C} and f an analytic function on G . Prove that if there is a constant M such that $\lim _{z \rightarrow a} \sup |f(z)| \leq M$ for all a in $\partial_{\infty} G$ then $|f(z)| \leq M$ for all z in G .
b) Let G be a bounded region and suppose f is continuous on $\overline{\mathrm{G}}$ and analytic on G . Show that if there is a constant $\mathrm{c} \geq 0$ such that $|\mathrm{f}(\mathrm{z})|=\mathrm{c}$ for all z on the boundary of G then either f is a constant function or f has a zero in G .
c) Does there exist an analytic function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D}$ with $\mathrm{f}\left(\frac{1}{2}\right)=\frac{3}{4}$ and $f^{\prime}\left(\frac{1}{2}\right)=\frac{2}{3} ?$ Justify your answer $(D=\{z:|z|<1\})$.

M.A./M.Sc.(Semester - III) Examination, 2010
 MATHEMATICS (2008 Pattern)
 MT-701 : Functional Analysis (New)

Time : 3 Hours
Max. Marks : 80

Instructions : i) Attempt any five questions.
ii) Figures to the right indicate full marks.

1. a) Let M be a closed linear subspace of a normed linear space N . The norm of a coset $x+M$ in the quotient space N / M is defined by
$\|\mathrm{x}+\mathrm{M}\|=\inf \{\|\mathrm{x}+\mathrm{m}\|: \mathrm{m} \in \mathrm{M}\}$.
Prove that N / M is a normed linear space.
6
b) Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be an n -tuple of scalars. If $\|\mathrm{x}\|_{\mathrm{p}}=\left(\Sigma\left|\mathrm{x}_{\mathrm{i}}\right|^{\mathrm{p}}\right)^{\frac{1}{p}}$, and $\|\mathrm{x}\|_{\infty}=\max \left\{\left|\mathrm{x}_{1}\right|, \ldots,\left|\mathrm{x}_{\mathrm{n}}\right|\right\}$, then prove that $\|\mathrm{x}\|_{\infty}=\lim \|\mathrm{x}\|_{\mathrm{p}}$, as $\mathrm{p} \rightarrow \infty$.
c) If M is a closed linear subspace of a normed linear space N , and if T is the natural mapping of N onto N / M defined by $\mathrm{T}(\mathrm{x})=\mathrm{x}+\mathrm{M}$, show that T is a continuous linear transformation for which $\|\mathrm{T}\| \leq 1$.
2. a) Let M be a linear subspace of a normed linear space N, and let f be a functional defined on M. If x_{0} is a vector not in M, and if $M_{0}=M+\left\{x_{0}\right\}$ is the linear subspace spanned by M and x_{0}, then prove that f can be extended to a functional f_{0} defined on M_{0} such that $\left\|\mathrm{f}_{0}\right\|=\|\mathrm{f}\|$.
b) Let M be a linear subspace of a normed linear space N , and x_{0} be a vector not in M . If d is the distance from x_{0} to M , then show that there exists a functional f_{0} in N^{*} such that $\mathrm{f}_{0}(\mathrm{M})=0, \mathrm{f}_{0}\left(\mathrm{x}_{0}\right)=1$, and $\left\|\mathrm{f}_{0}\right\|=\frac{1}{\mathrm{~d}}$.
c) True/False ? Justify your answer.

If N is complete, then N is reflexive.
3. a) State and prove the closed graph theorem.
b) With usual notations prove that $\mathrm{x} \rightarrow \mathrm{F}_{\mathrm{x}}$ is a norm preserving mapping of N into $\mathrm{N}^{* *}$.
4. a) Show that the parallelogram law is not true in $l_{1}^{n}(\mathrm{n}>1)$.
b) Let M be a proper closed linear subspace of a Hilbert space H. Prove that there exists a non-zero vector z_{0} in H such that $\mathrm{z}_{0} \perp \mathrm{M}$.
c) Show that $\left\{\frac{e^{i n x}}{\sqrt{2 \pi}}\right\}$ is an orthonormal set in $L_{2}[0,2 \pi]$.
5. a) Prove that an operator T on a Hilbert space H is normal if and only if $\left\|T^{*} x\right\|=\|T x\|$ for every $x \in H$.
b) Show that an orthonormal set in a Hilbert space is linearly independent.
c) Let P be a projection on a Hilbert space H with range M and null space N . Prove that $\mathrm{M} \perp \mathrm{N}$ if and only if P is self-adjoint.
6. a) If T is an operator on a Hilbert space H, then prove that the following conditions are all equivalent to one another. :
i) $\mathrm{T}^{*} \mathrm{~T}=\mathrm{I}$;
ii) $(\mathrm{Tx}, \mathrm{Ty})=(\mathrm{x}, \mathrm{y})$ for all x and y ;
iii) $\|T x\|=\| x \mid$ for all x.
b) Let N_{1} and N_{2} be normal operators on a Hilbert space H with the property that either commutes with the adjoint of the other. Prove that $N_{1}+N_{2}$ and $N_{1} N_{2}$ are normal.
c) Prove that the adjoint operation $\mathrm{T} \rightarrow \mathrm{T}^{*}$ on $\mathrm{B}(\mathrm{H})$ has the following properties :
i) $(\alpha \mathrm{T})^{*}=\bar{\alpha} \mathrm{T}^{*}$;
ii) $\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}=\mathrm{T}_{2}^{*} \mathrm{~T}_{1}^{*}$.
7. a) With usual notations, prove that $\left(l_{\mathrm{p}}^{\mathrm{n}}\right)^{*}=l_{\mathrm{q}}^{\mathrm{n}}$.
b) Show that a projection on a Hilbert space H satisfies $\mathrm{O} \leq \mathrm{P} \leq \mathrm{I}$. Under what conditions will $\mathrm{P}=\mathrm{O}$ and $\mathrm{P}=\mathrm{I}$?
c) Let A and $\mathrm{A} \subset \mathrm{B}$ be nonempty subsets of a Hilbert space H . Show that $A \subset A^{\perp}$ and $B^{\perp} \subset A^{\perp}$.
8. a) i) State spectral theorem.
ii) If T is a normal operator on a Hilbert space H , then prove that $\mathrm{M}_{\mathrm{i}}^{\prime} \mathrm{S}$ span H .
b) Let T be an operator on H , and prove the following statements :
i) T is singular if and only if $0 \in \sigma(\mathrm{~T})$;
ii) If T is non-singular, then $\lambda \in \sigma(\mathrm{T})$ if and only if $\lambda^{-1} \in \sigma\left(\mathrm{~T}^{-1}\right)$.

M.A./M.Sc. (Semester - III) Examination, 2010
 MATHEMATICS (2004 Pattern)
 MT-701 : General Topology (Old)

Max. Marks: 80

N.B. : 1) Answer any five questions.
 2) Figures to the right indicate marks.

1. a) Define a basis for a topology on a set X. Show that the topology generated by a basis equals the collection of all unions of elements of the basis.
b) Let X be a set and $\tau=\{u \subseteq x \mid x-u$ is a finite or all of $x\}$. Then show that τ is a topology on X .
c) If $X=\{a, b, c\}$, let $\tau_{1}=\{\phi, x,\{a\},\{a, b\}\}$ and $\tau_{2}=\{\phi, x,\{a\},\{b, c\}\}$.

Find the smallest topology containing τ_{1} and τ_{2}, and the largest topology contained in τ_{1} and τ_{2}.
2. a) Let A be a subset of the topological space X ; let A^{\prime} be the set of all limit points of A. Then prove that $A=A \cup A^{\prime}$.
b) Is the real line \mathbb{R} a Hausdorff space ? Justify.
c) Find the closures of the following subsets of the real line IR ?
i) $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\}$
ii) The set Q of rational numbers.
3. a) Let $f: A \rightarrow X \times Y$ be given by the equation $f(a)=\left(f_{1}(a), f_{2}(a)\right)$. Prove that f is continuous if and only if the functions $f_{1}: A \rightarrow X$ and $f_{2}=A \rightarrow Y$ are continuous.
b) Show that the mapping $\mathrm{f}: \mathbb{R} \rightarrow \operatorname{IR}$ given by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+1$ is a homeomorphism.
c) Suppose that $f: X \rightarrow Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that $f(x)$ is a limit point of $f(A)$?
4. a) Prove that a finite Cartesian product of connected spaces is connected.
b) Prove that the image of a connected space under a continuous map is connected.
c) Show that the set $\mathbb{\mathbb { R }}$ is not collected in the box topology.

5
5. a) Let Y be a subspace of X. Prove that Y is compact if and only if every covering of Y by sets open in X contains a finite sub collection covering Y .6
b) Show that the real line \mathbb{R} is not compact.
c) Show that if $f: X \rightarrow Y$ is continuous, where X is compact and Y is Hausdorff, then f is closed map.
6. a) Prove that if a topological space X has a countable basis then it is Lindelöf
and separable.
b) Prove that the space \mathbb{R}_{e} is first countable but not second countable.
c) Show by an example that the product of two Lindelöf spaces need not be Lindelöf.
7. a) Prove that a subspace of a Hausdorff space is Hausdorff and a product of Hausdorff space is Hausdorff.
b) i) Show that a closed subspace of a normal space is normal.
ii) Show that if πX_{α} is regular then so is X_{α}.
8. a) Prove that every regular space X with a countable basis is metrizable.
b) State the Tychonoff Theorem. Hence show that the product $\prod_{n=1}^{\infty}[-n, n]$ is compact in the product topology.

M.A./M.Sc. (Semester - III) Examination, 2010 MATHEMATICS (2008 Pattern) MT - 702 : Ring Theory (New)

N.B. : 1) Attempt any five questions.
 2) Figures to the right indicate full marks.

1. a) If R is a ring with identity and S is a subring of R containing the identity, then prove that if u is a unit in S then u is a unit in R, show by example that the converse is false.
b) Define the ring of integers in the quadratic field $\mathrm{Q}(\sqrt{\mathrm{D}})$, D is square free integer.
Prove that the element α in ring of integers in the quadratic field is a unit iff norm of $\alpha= \pm 1$.
c) i) Prove that the only Boolean ring that is an integral domain is $z / 2 z$. 3
ii) If R is an integral domain and $x^{2}=1$ for some $x \in R$ then prove that $x= \pm 1$.
2. a) If R is an integral domain and if $p(x), q(x) \in R[x]$ then prove that
i) degree $p(x) q(x)=$ degree $p(x)+$ degree $q(x)$.
ii) $R[x]$ is an integral domain.
b) Find all ring homomorphisms from z to $\frac{\mathrm{z}}{10 \mathrm{z}}$. Describe the kernel and image in each case.
c) If $\phi: R \rightarrow S$ is a ring homomorphism and if x is nilpotent element of R then prove that $\phi(x)$ is a nilpotent of S.
3. a) Prove that every ideal in a Euclidean domain is principal.

5
b) If R is a quadratic integar ring $\mathrm{z} \mid \sqrt{-5}\rfloor$ and $\mathrm{I}=(3,2+\sqrt{-5})$, is an ideal then show that I is not principal ideal. Is R a Euclidean domain?
c) If R is a Euclidean domain and if $a, b, c \in R(a \neq 0, b \neq 0)$ a divides $b c$ then show that $\frac{\mathrm{a}}{(\mathrm{a}, \mathrm{b})}$ divides c .
4. a) Prove that every non-zero prime ideal in a principal ideal domain is a maximal
ideal. Is $Z[x]$ a principal ideal domain ?
b) Prove that a quotient of PID, in general, is not a PID; but quotient of by a prime ideal, ideal is PID.
c) Prove that the quotient ring $\frac{\mathrm{z}[\mathrm{i}]}{(1+\mathrm{i})}$ is a field of order 2. Is it a U.F.D. ?
5. a) Prove that a polynomial of degree two or three over a field F is reducible iff it has a root in F .

5
b) If I is a proper ideal in the integral domain R and $\mathrm{p}(\mathrm{x})$ is a non constant monic polynomial in $R[x]$. If the image of $p(x)$ in $\left(\frac{R}{I}\right)[x]$ cannot be factored in $\frac{R}{I}[x]$ into two polynomials of smaller degree then prove that $p(x)$ is irreducible in $\mathrm{R}[\mathrm{x}]$.
c) Construct a field with nine elements. 5
6. a) Show that the following are equivalent.
i) R is Noetherian ring.
ii) Every non-empty set of ideals of R contains a maximal element under inclusion.
iii) Every ideal of R is finitely generated.
b) If the polynomial ring $R[x]$ is Noetherian then prove that R is Noetherian.
c) Show that the ring of continuous real valued functions on $[0,1]$ is not a Noetherian ring.
7. a) If I is an ideal in the commutative ring R then prove that rad I is an ideal containing I and $\frac{\mathrm{rad} \mathrm{I}}{\mathrm{I}}$ is the nilradical of R / I.
b) Prove that in the ring of integers z , the ideal (a) is a radical ideal iff a is squarfree or zero.
c) Define affine algebraic set show that one point subsets of A^{n} for any n , affine n -space over the field k , are affine algebraic.

is a unit for all $r \in R$.
b) Prove that Artirian integral domain is a field. 6
c) Prove that every PID is a Dedekind domain.

M.A./M.Sc. (Semester - III) Examination, 2010 MATHEMATICS (2004 Pattern) MT - 702 : Mechanics (Old)

Time: 3 Hours

Max. Marks : 80

> N.B. : i) Attempt any five questions.
> ii) Figures to the right indicate full marks.

1. a) Derive Lagrange's equations of motion using D'Alembert's principle.
b) Write down the equations of constraints in cartesian co-ordinates for a small rigid rod of length l is allowed to move in any manner inside a balloon of fixed radius $\mathrm{R}>l$, the end parts of the rod always touching the bolloon's surface.
c) Find the equation of motion of a solid sphere rollig down on an incline using Lagrange multipliers for the rolling constraints.
2. a) Explain the following terms :
i) Degree of freedom
ii) Generalized momentum
iii) Virtual work
iv) Cyclic co-ordinates.
b) Show that the expression for the kinetic energy on the quadratic function of generalized velocities.
c) If L is a Lagrangian for a system of n degree of freedom satisfying the Lagrange's equations, then show that $\mathrm{L}^{1}=\mathrm{L}+\frac{\mathrm{dF}}{\mathrm{dt}}\left(\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}}, \mathrm{t}\right)$ also satisfies the Lagrange's equation, where F is any arbitrary, but differential function of its arguments.
3. a) Set up the Lagrangian for two bodies moving under central force about their center of mass and show that it can be reduced to an equivalent one body problem.
b) Prove that angular momentum of a particle in central force field remains constant.
c) Find the central force under the action of which a particle will follow $r=a(1+\cos \theta)$.
4. a) Explain the following terms :
i) Lagendre's Dual transformation
ii) Passive variables.
b) Show that the Hamilton's principle

$$
\delta \int_{\infty}^{\mathrm{t}} \mathrm{Ldt}=0
$$

also holds for the non-conservative system.
c) A particle moves on a smooth surface under gravity. Use Hamilton's principle to find the equation of motion.
5. a) Deduce Newton's second law of motion from Hamilton's principle.
b) Prove that a co-ordinate which is cyclic in the Lagrangian is also cyclic in the Hamiltonian.
c) Find the Routhian for the Lagrangian

$$
\mathrm{L}=\frac{1}{2} \mathrm{I}_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}+\frac{1}{2} \mathrm{I}_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)-\mathrm{mgl} \cos \theta
$$

Where $\mathrm{I}_{1}, \mathrm{I}_{3}, \mathrm{~m}, \mathrm{~g}, 1$ are constants.
6. a) Explain the method to obtain the required canonical transform when generating function is given.
b) Show that the reflection about the $x_{2} x_{3}$ plane passing through the origin is canonical transform. Obtain its generating function.
c) Define Poission's bracket and show that it is invariant under canonical transformation.
7. a) State and prove Jacobi-Poisson theorem on Poisson bracket.
b) Evaluate $\left[\mathrm{L}_{1}, \mathrm{~A}_{\mathrm{jk}}\right]$ and $\left[\mathrm{A}_{\mathrm{jk}}, \mathrm{A}_{\mathrm{il}}\right]$ where $\mathrm{L}=\mathrm{r} \times \mathrm{p}$ and $\mathrm{Aij}=\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}+\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$.
c) Calculate the eigenvalues and eigen vector of the rotation matrix,

$$
A=\left[\begin{array}{rrr}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

8. a) Prove the Jacobi's theorem for the time independent Hamilton - Jacobi theory.
b) Explain the method to find the complete integral of the Hamilton-Jacobi equation.
c) Consider the motion of a body of unit mass on the constrained path $y=\cosh x$ under a potential $v=\frac{x^{2}}{2}$. Solve Hamilton's equation of motion directly as well as by using the Hamilton- Jacobi method.

M.A./M.Sc. (Semester - III) Examination, 2010
 MATHEMATICS
 MT-704 : Measure and Integration (New) (2008 Pattern)

Time : 3 Hours
Max. Marks : 80
N.B. : i) Attempt any five questions.
ii) Figures to the right indicate full marks.
iii) \mathcal{B} denotes a σ-algebra of subsets of X and μ denotes a measure on (X, \mathcal{B}).

1. A) Suppose that for each α in a dense set D of real numbers there is assigned a set $\mathrm{B}_{\alpha} \in \mathcal{B}$ such that $\mu\left(\mathrm{B}_{\alpha} \sim \mathrm{B}_{\beta}\right)=0$ for $\alpha<\beta$. Prove that there is a measurable function f such that $\mathrm{f} \leq \alpha$ a.e. on B_{α} and $\mathrm{f} \geq \alpha$ a.e. on $\mathrm{X} \sim \mathrm{B}_{\alpha}$.
B) If $E_{1} \in \mathcal{B}, \mu E_{1}<\infty$ and $E_{i} \supset E_{i+1}$, then prove that $\mu\left(\bigcap_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} \mu E_{n}$.
C) Let $\left\langle f_{n}\right\rangle$ be a sequence of measurable functions that converges to a function f except at the points of set E of measure zero. Show that if μ is complete, then f is a measurable function.
2. A) Let $\left\langle f_{n}\right\rangle$ be a sequence of non-negative measurable functions that converge almost everywhere on a set E to a function f . Prove that $\int_{\mathrm{E}} \mathrm{f} \leq \underline{\lim } \int_{\mathrm{E}} \mathrm{f}_{\mathrm{n}}$.
B) If f and g are non-negative measurable functions and a and b are non-negative constants, then show that

$$
\begin{equation*}
\int \mathrm{af}+\mathrm{bg}=\mathrm{a} \int \mathrm{f}+\mathrm{b} \int \mathrm{~g} . \tag{4}
\end{equation*}
$$

C) Give an example of a decreasing sequence $\left\langle\mu_{\mathrm{n}}\right\rangle$ of measures on a measurable space such that the set function μ defined by $\mu \mathrm{E}=\lim \mu_{\mathrm{n}} \mathrm{E}$ is not a measure.
3. A) Let v be a signed measure on the measurable space (X, \mathcal{B}). Prove that there is a positive set A and a negative set B such that $X=A \cup B$ and $\mathrm{A} \cap \mathrm{B}=\phi$.
B) Show that if measures v_{1} and v_{2} are singular with respect to μ, then so is $c_{1} V_{1}+c_{2} V_{2}$.
C) Prove that every measurable subset of a positive set is itself positive. Further, prove that union of a countable collection of positive sets is positive.
4. A) Let $(\mathrm{X}, \mathcal{B}, \mu)$ be a σ-finite measure space and v a σ-finite measure defined on \mathcal{B}. Then prove that we can find a measure v_{0}, singular with respect to μ, and a measure v_{1}, absolutely continuous with respect to μ, such that $v=v_{0}+v_{1}$.
B) If $A \in a$ and if $\left\langle A_{i}\right\rangle$ is any sequence of sets in a such that $A \subseteq \bigcup_{i=1}^{\infty} A_{i}$, prove that $\mu \mathrm{A} \leq \sum_{\mathrm{i}=1}^{\infty} \mu \mathrm{A}_{\mathrm{i}}$.
C) Let $(\mathrm{X}, \mathcal{B}, \mu)$ be a finite measure space and g an integrable function such that for some constant M ,
$\left|\int g \phi d \mu\right| \leq M\|\phi\|_{\perp}$ for all simple functions ϕ. Prove that $g \in L^{\infty}$.
5. A) Let F be a bounded linear functional on $\mathrm{L}^{\mathrm{P}}(\mu)$ with $1<\mathrm{p}<\infty$. Show that there is a unique element $g \in L^{q}$ such that
$F(f)=\int f g d \mu$
and $\|F\|=\|g\|_{q}$, where $\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=\infty$.
B) Let X be a set consisting of two points. Construct an outer measure on X which is not regular.
C) If μ is a finite Baire measure on the real line, then show that its cumulative distribution function F is a monotone increasing bounded function which is continuous on the right. Further, show that $\lim _{x \rightarrow-\infty} \mathrm{F}(\mathrm{x})=0$.
6. A) Let μ be a measure on a σ-algebra a of subsets of X , and let \mathscr{M} be a collection of subsets of X which is closed under countable unions and which has the property that for each $\mathrm{A} \in \mathrm{a}$ with $\mathrm{A} \subset \mathrm{M} \in \mathscr{M}$, we have $\mu \mathrm{A}=0$. Prove that there is an extension $\bar{\mu}$ to μ to the smallest σ-algebra \mathcal{B} containing a and \mathcal{M} such that $\bar{\mu} \mathrm{M}=0$ for each $\mathrm{M} \in \mathcal{M}$.
B) Let B be a μ^{*} - measurable set with $\mu^{*} \mathrm{~B}<\infty$. Prove that $\mu_{*} B=\mu^{*} B$.
C) Let A_{i} be a disjoint sequence of sets in a Prove that

$$
\mu_{*}\left(E \cap \bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu_{*}\left(E \cap A_{i}\right) .
$$

7. A) Let F be a closed subset of X. Prove that F is a locally compact Hausdorff space, and the Baire sets of F are those sets of the form $\mathrm{B} \cap \mathrm{F}$, where B is a Baire set in X.
B) Let μ be a finite measure defined on a σ-algebra \mathscr{M} which contains all the Baire sets of a locally compact space X . Prove that μ is regular if it is inner regular.
C) Show that the intersection of two σ-compact sets is σ-compact.
8. A) Let μ be a measure defined on a σ-algebra \mathcal{M} containing the Baire sets. Assume either that μ is quasi regular or that μ is inner regular. If μ is outer regular for each compact set or if μ is inner regular for each bounded open set, then prove that μ is regular for each σ-bounded set in \mathcal{M}.
B) Let μ be a Baire measure on X. Prove that there are complete saturated measures $\bar{\mu}$ and $\underline{\mu}$ defined on a σ-algebra containing the Borel sets with $\bar{\mu}$ quasi regular, $\underline{\mu}$ inner regular, and $\overline{\mu \mathrm{E}}=\underline{\mu} \mathrm{E}=\mu \mathrm{E}$ for each σ-bounded Baire set.

M.A./M.Sc. (Semester - III) Examination, 2010
 MATHEMATICS
 MT-704 : Mathematical Methods - I (Old) (2004 Pattern)

Time : 3 Hours
Max. Marks: 80
N.B. : 1) Attempt any five questions.
2) Figures to the right indicate full marks.

1. a) Define conditionally convergent series and give an example of the same.
b) Discuss convergence of the following series.
i) $\sum_{n=1}^{\infty} n^{4} \mathrm{e}^{-n^{2}}$
ii) $\frac{1}{2}+\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\ldots$
c) Find first four terms of the Taylor series expansion of the function $\tan ^{-1} x$ around $\mathrm{x}=0$.
d) Explain the root test for convergence of a series.
2. a) If $\mathrm{e}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n}!}$, show that $2<\mathrm{e}<3$.
b) Show that the alternating series $a_{1}-a_{2}+a_{3}-a_{4} \ldots$, where $0 \leq a_{n+1} \leq a_{n}$ and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=0$, converges.
c) State the Dirichlet conditions for convergence of Fourier series.
d) Expand $f(x)=x^{2},-\pi<x<\pi$ as Fourier series, where f is periodic with period π.
3. a) Find the amplitude, period, frequency, wave velocity and wave length of the wave motion $\mathrm{y}(\mathrm{x})=\sin \frac{5 \pi \mathrm{x}}{6}$.
b) Define Legendre form of elliptic integrals of the first and second kind.
c) Show that, if $0<\mathrm{k}<1$, the elliptic integral

$$
\begin{aligned}
\mathrm{K}(\mathrm{k}) & =\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{1-\mathrm{k}^{2} \sin ^{2} \theta}} \\
& =\frac{\pi}{2}\left[1+\left(\frac{1}{2}\right)^{2} \mathrm{k}^{2}+\left(\frac{1.3}{2.4}\right)^{2} \mathrm{k}^{4}+\left(\frac{1.3 .5}{2.4 .6}\right)^{2} \mathrm{k}^{6}+\ldots\right]
\end{aligned}
$$

d) Find the length of the arc of the curve $y=\sin x, 0 \leq x \leq \pi$, in terms of elliptic integrals.
4. a) Define $\Gamma(m)$ and $\beta(m, n)$. Further show that $B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$,,$n>0$.
b) Evaluate $\int_{0}^{\pi / 2} \sin ^{4} \theta \cos ^{5} \theta \mathrm{~d} \theta$.
c) Prove the duplication formula

$$
\begin{equation*}
2^{2 \mathrm{P}-1} \Gamma(\mathrm{P}) \Gamma\left(\mathrm{P}+\frac{1}{2}\right)=\sqrt{\pi} \Gamma(2 \mathrm{P}) . \tag{6}
\end{equation*}
$$

5. a) Show that

$$
\begin{equation*}
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0 \text { if } m \neq n \text {, where } P_{n} \text { denotes Legendre polynomial. } \tag{4}
\end{equation*}
$$

b) State the Rodrigues formula for Legendre polynomials. Evaluate $\mathrm{P}_{4}(\mathrm{x})$ using the same.
c) Show that for $\mathrm{p}=\mathrm{n}(\mathrm{n}+1), \mathrm{n} \in \mathbb{N}$, Legendre equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p y=0$, admits a polynomial solution of degree n.
6. a) Find the Laplace transform of :
i) $\mathrm{L}\left[\mathrm{e}^{4 \mathrm{t}} \sinh 3 \mathrm{t}\right](\mathrm{s})$
ii) $L\left[\frac{1-\cos t}{t}\right]$
b) Find inverse Laplace transform

$$
\begin{equation*}
L^{-1}\left[\frac{s+2}{s^{2}-4 s+13}\right](t) \tag{4}
\end{equation*}
$$

c) Solve the following differential equation using the Laplace transform.

$$
\begin{equation*}
\mathrm{y}^{\prime \prime}+4 \mathrm{y}^{\prime}+8 \mathrm{y}=\cos 2 \mathrm{t}, \mathrm{y}(0)=2, \mathrm{y}^{\prime}(0)=1 \tag{6}
\end{equation*}
$$

7. a) State the Rodrigue's formula for Hermite polynomials and evaluate $H_{2}(x)$, $\mathrm{H}_{3}(\mathrm{x})$.
b) Solve the Bessel equation of order zero :
$x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$, around the regular singular point 0 and derive the expression for J_{0}.
c) Show that $\frac{d}{d x} J_{0}(x)=-J_{1}(x)$.
8. a) Define Fourier transform and prove that
i) $F\left[e^{\text {iat }} f(t)\right](s)=\hat{f}(s+a)$
ii) $\mathrm{F}[\mathrm{f}(\mathrm{t}-\mathrm{a})](\mathrm{s})=\mathrm{e}^{\text {ias }} \hat{\mathrm{f}}(\mathrm{s})$.
b) Find Fourier transforms of
i) $f(t)=e^{-t^{2}}$
ii) $f(t)=e^{-|t|}$.
c) State and prove Fourier convolution theorem.

M.A./M.Sc. (Semester - III) Examination, 2010
 MATHEMATICS (2008 Pattern)
 MT. 705 : Graph Theory (New)

N.B.: 1) Answer any five questions.
2) Figures to the right indicate full marks.

1. a) Prove that if G is a self-complementary graph with n vertices, then n or $\mathrm{n}-1$
is divisible by 4 .
b) Prove that an edge is a cut edge if and only if it belongs to no cycle.
c) Prove that every set of six people contains at least three mutual acquaintances or three mutual strangers.
2. a) Prove that if G is a simple n -vertex graph with $\delta(\mathrm{G}) \geq \frac{(\mathrm{n}-1)}{2}$, then G is connected.
b) Prove that every simple graph with at least two vertices has at least two
vertices of same degree.
c) Prove that every Tournament has a king. 4
3. a) Prove that for an n-vertex graph G (with $n \geq 1$), the following are equivalent :
i) G is connected and has no cycles
ii) G is connected and has $n-1$ edges
iii) G has $\mathrm{n}-1$ edges and no cycles.
b) Determine whether the sequence (55542111) is graphic ? Provide a construction or a proof of impossibility.
c) Using matrix tree theorem, count the spanning trees in the graph G.

4. a) Prove that in a connected weighted graph G, Kruskal's algorithm constructs a minimum weight spanning tree.
b) There are six cities in a network. The travel time for traveling directly from i to j is the entry $a_{i j}$, in the matrix below. Also, $a_{i j}=\infty$ indicates that there is no direct route. Determine the least travel time and quickest route from i to j for each pair i, j.
$\left(\begin{array}{cccccc}0 & 5 & \infty & 8 & 5 & 2 \\ 5 & 0 & 3 & 4 & \infty & 5 \\ \infty & 3 & 0 & 2 & 4 & \infty \\ 8 & 4 & 2 & 0 & 2 & 5 \\ 5 & \infty & 4 & 2 & 0 & 11 \\ 2 & 5 & \infty & 5 & 11 & 0\end{array}\right)$
5. a) Prove that for $\mathrm{k}>0$, every k -regular bipartite graph has a perfect matching.
b) Define :
i) Maximal matching in a graph
ii) Maximum matching in a graph.

Find the smallest graph having a maximal matching that is not a maximum matching.
c) Prove or disprove $=$ Every tree has at most one perfect matching.
6. a) Prove that if G is a graph without isolated vertices then $\alpha^{\prime}(\mathrm{G})+\beta^{\prime}(\mathrm{G})=\mathrm{n}(\mathrm{G})$.
b) i) Find a maximum matching in the following graph.

ii) Let T be a tree with n vertices, and let k be the maximum size of an independent set in T. Determine $\alpha^{\prime}(\mathrm{T})$ in terms of n and k .
7. a) Prove that if G is a 3 - regular graph then $k(G)=k^{\prime}(G)$.
b) i) Determine $\mathrm{k}(\mathrm{G}), \mathrm{k}^{\prime}(\mathrm{G})$ and $\delta(\mathrm{G})$ for the graph G where G is a complete graph on five vertices.
ii) Show that every graph with connectivity 4 is 2 -connected.
8. a) Prove that a graph is 2 -connected if and only if it has an ear decomposition.
b) i) State Menger's theorem. Illustrate with one example.
ii) State Max-flow Min-cut theorem. Illustrate with one example.

M.A./M.Sc. (Semester - III) Examination, 2010
 MATHEMATICS (2004 Pattern)
 MT. 705 : Rings and Modules (Old)

Time : 3 Hours
Max. Marks : 80

N.B.: 1) Attempt any five questions.

2) Figures to the right indicate full marks.
1. a) If R is commutative ring with 1 , then prove that $A \in M_{n}(R)$ is a unit iff its
determinant $\operatorname{det}(A)$ is a unit in R.
b) If R is a ring with 1 and $x \in R$ is nilpotent then show that $1+x$ is a unit in R. Can one replace 'nilpotent' by "zero divisor".

5
c) Is the following statement true ? Justify ? In the ring $Z_{2 k}, \overline{\mathrm{k}}$ is an idempotent if K is odd.
2. a) If R is a ring with 1 and I is an ideal in R such that $I \neq R$ then prove that
there is a maximal ideal M of the same kind as I such that $I \subseteq M$.
b) Show that the above result is not true if R has no unity even if R is commutative.
3. a) Prove that the $Z / n Z$ is a field iff $z / n z$ is an integral domain or iff n is a prime. $\mathbf{8}$
b) If R is a commutative ring with unity and each ideal in R is prime then prove that R is a field.
c) If the intersection of two prime ideals is a prime ideal then prove that one of them is contained in the other.

4. a) If for $n \geq 2$, the ring z / nz has no non-trivial nilpotent elements then prove
that n is square tree.
b) Give an example of a ring in which an ideal of an ideal is not an ideal.
c) Show that in any Boolean ring an ideal is maximal iff it is a prime ideal.
5. a) If $I \subseteq J$ are both 2 -sided ideals in a ring R then prove that $\frac{R / I}{J / I} \simeq R / J$.
b) Give examples of homomorphisms of rings $f: R \rightarrow S$ and $g: S \rightarrow T$ such that $g_{o f} f$ is an epimorphism but f is not.
c) Prove that $\operatorname{Hom}_{\text {rings }}\left(\mathrm{z}_{\mathrm{n},} \mathrm{z}\right)=(0) \quad \forall \mathrm{n} \in \mathrm{N}$.
6. a) Prove that a prime is an irreducible but not conversely.
b) Prove that every Euclidean domain is a PID.
c) Show that in the ring Z [i] the elements $3+4 \mathrm{i}$ and $4-3$ i are associates whereas $11+7 \mathrm{i}$ is co-prime to $18-\mathrm{i}$.
7. a) If the ring R is an FD in which every irreducible element is a prime then prove that R is UFD.
b) If R is UFD then prove that every irreducible polynomial in $\mathrm{R}[\mathrm{X}]$ is a prime.
c) i) Show by an example that a subring or a quotient of a UFD need not be a UFD.
ii) Show by Eisenstein's criterion $x^{2}+1$ is irreducible over IR. 3
8. a) If M and N are submodules of a module P over R. Then prove that $M \cap N=(0) \Leftrightarrow$ every element $S \in M+N$ can be uniquely written as $s=x+y$ with $x \in M$ and $y \in N$.
b) Show that every finitely generated R-module M can be considered as a qualient of R^{n} for some n .
c) Define Torsion module and torsion free module and give example for each.

For any module M over a commutative integral domain R, prove that the quotient $\mathrm{M} / \mathrm{M}_{\mathrm{t}}$ is torsion free.
$\left(M_{t}=\right.$ set of all torsion elements of $\left.M\right)$.

M.A./M.Sc. Examination, 2010
 MATHEMATICS (2005 Pattern)
 MT-707 : Graph Theory (Old)

Time: 3 Hours
Max. Marks: 80

N.B.: 1) Attempt any five questions.

2) Figures to the right indicate full marks.
1. a) List all non-isomorphic simple directed graphs with three vertices. 6
b) Prove that if G is bipartite, then every circuit in G has even length.
c) If all vertices of a graph G have degree P , where P is an odd number, show that the number of edges in G is a multiple of P .
2. a) If v and e denote the number of vertices and edges respectively in a connected planar graph G , with $\mathrm{e}>1$, then prove that $\mathrm{e} \leq 3 \mathrm{v}-6$. Hence, prove that K_{5} is nonplanar.
b) If a connected planar graph with n vertices, all of degree 3 has 7 regions, determine n .
c) i) Find a planar graph that is isomorphic to its own dual.
ii) For what values of r and s , is the complete bipartite graph $\mathrm{K}_{\mathrm{r}, \mathrm{s}}$ planar ?
3. a) Prove that an undirected multigraph has an Euler Cycle if and only if it is connected and has all vertices of even degree.
b) Find the chromatic number of Petersen's graph. Give justification.
c) i) For which values of n, does K_{n}, the complete graph on n vertices have an Euler cycle?
ii) Prove or disprove: A graph with an Euler cycle have a bridge.
4. a) Prove that every tournament has a Hamilton path.
b) Prove that every planar graph can be 5-coloured.
c) Find the chromatic polynomial of the graph C_{4}, of a circuit of length 4 .
5. a) Prove that there are $\mathrm{n}^{\mathrm{n}-2}$ different undirected trees on n lables.
b) Show that any tree with more than one vertex has at least two vertices of degree one.

6
c) Show that the chromatic polynomial of an n vertex tree in $K(K-1)^{n-1}$.
6. a) Prove that Prim's algorithm yields a minimal spanning tree.
b) Find all spanning trees (upto isomorphism) in the graph G.

c) If 56 people sign up for a tennis tournament, how many matches will be played in the tournament?
7. a) Prove that for any $a-z$ flow f, and any $a-z$ cut (P, \bar{P}), in a network N, $|\mathrm{f}| \leq \mathrm{K}(\mathrm{P}, \overline{\mathrm{P}})$.
b) Determine the shortest path from vertex a to f in the following graph, using Dijkstra's algorithm.

8. a) State and prove Hall's marriage theorem.
b) Find a maximal flow from a to z in the following Network.

M.A./M.Sc. (Semester - IV) (2008 Pattern) Examination, 2010 MATHEMATICS
 MT - 801 : Field Theory (New)

Time : 3 Hours
Max. Marks: 80
N.B.: 1) Attempt any five questions.
2) Figures to the right indicate marks.

1. a) Give an example of an irreducible polynomial in $\mathbb{Z}[x]$, having degree $n \geq 1$. Justify your answer.
b) Let $\mathrm{F} \subseteq \mathrm{E} \subseteq \mathrm{K}$ be fields. If $[\mathrm{K}: \mathrm{E}]<\infty$ and $[\mathrm{E}: \mathrm{F}]<\infty$, show that :
i) $[\mathrm{K}: \mathrm{F}]<\infty$ and
ii) $[\mathrm{K}: \mathrm{F}]=[\mathrm{K}: \mathrm{E}][\mathrm{E}: \mathrm{F}]$.
c) Let $\mathrm{p}(\mathrm{x})$ be an irreducible polynomial in $\mathrm{F}[\mathrm{x}]$. Show that there exists an extension E of F in which $\mathrm{p}(\mathrm{x})$ has a root.
2. a) Show that a finite extension field is an algebraic extension.
b) Let $\mathrm{E}=\mathrm{F}\left(\mathrm{u}_{1}, \ldots . . \mathrm{u}_{\mathrm{n}}\right)$ be a finitely generated extension of F such that each u_{i}, $\mathrm{i}=1, \ldots, \mathrm{n}$ is algebraic over F . Show that E is a finite extension of F and hence an algebraic extension of F .
c) Let F be a field, and let $\sigma: \mathrm{F} \rightarrow \mathrm{L}$ be an embedding of F into an algebraically closed field L. Let $\mathrm{E}=\mathrm{F}(\alpha)$ be an algebraic extension of F . Show that σ can be extended to an embedding $\eta: \mathrm{E} \rightarrow \mathrm{L}$ and the number of such extensions is equal to the number of distinct roots of the minimal polynomial of α.
3. a) Define the splitting field of a polynomial $f(x) \in F[x]$, where $\operatorname{deg} f(x) \geq 1$.
b) Find the splitting field of $\mathrm{x}^{\mathrm{p}}-1 \in \mathrm{Q}[\mathrm{x}]^{\prime} \mathrm{p}$ odd prime, and also find the degree of the splitting field.
c) Let E / F be an algebraic extension and suppose that every irreducible polynomial in $F[x]$ that has a root in E splits into linear factors in E. Show that E is the splitting field of a family of polynomials in $\mathrm{F}[\mathrm{x}]$.
d) Is $Q\left(2^{\frac{1}{3}}\right)$ a normal extension of Q ? Justify your answer.
4. a) If $f(x) \in F[x]$ is irreducible over F, then show that all roots of $f(x)$ have the same multiplicity.

5
b) Show that if F is a finite field, the number of elements of F is p^{n} for some prime p and an integer $\mathrm{n} \geq 1$.
c) Let p be a prime and n an integer ≥ 1. Show that the roots of $\mathrm{x}^{\mathrm{p}^{n}}-\mathrm{x} \in \mathbb{Z}_{\mathrm{p}}[\mathrm{x}]$ in its splitting field are distinct and form a field F with p^{n} elements. Show also that F is the splitting field of $x^{p^{n}}-x$ over \mathbb{Z}_{p}.
5. a) Suppose E is a finite separable extension of a field F. Show that E is a simple extension of F.
b) Let $\mathrm{F} \subset \mathrm{E} \subset \mathrm{K}$ be three fields such that E is a finite separable extension of F and K is a finite separable extension of E .

Show that K is a finite separable extension of F .
c) Is a $\mathbb{Q}(\sqrt{2})$ a separable extension of \mathbb{Q} ? Why?
6. a) Let F and E be fields, let $\sigma_{1}, \sigma_{2}, \ldots ., \sigma_{\mathrm{n}}$ be distinct embeddings of F into E . Show that $\sigma_{1}, \sigma_{2}, \ldots . ., \sigma_{\mathrm{n}}$ are linearly independent over E .
b) Let F be a finite normal separable extension of a field F . Show that F is the fixed field of $G(E / F)$.
c) If E / F is a Galois extension and $G(E / F) \approx S_{3}$, find the number of intermediate fields between F and E .
7. a) Prove that any polynomial of degree ≥ 1 in $\mathbb{C}[x]$ factorises into linear factors in $\mathbb{C}[\mathrm{x}]$.
b) Let $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ and let E be the splitting field of $\mathrm{f}(\mathrm{x})$. Suppose $\mathrm{G}(\mathrm{E} / \mathrm{F})$ is a solvable group. Show that $\mathrm{f}(\mathrm{x})$ is solvable by radicals over F .
8. a) Show that the sum and difference of constructible numbers are constructible.
b) Show that it is impossible to construct a cube with volume equal to twice the volume of a given cube using ruler and compass only.
c) Show that the Galois group of $x^{4}+1 \in \mathbb{Q}[x]$ is the Klein four-group.

M.A./M.Sc. (Semester - IV) (2004 Pattern) Examination, 2010 MATHEMATICS

MT - 801 : Algebraic Topology (Old)
Time : 3 Hours
Max. Marks: 80
N.B.: 1) Attempt any five questions.
2) All questions carry equal marks.
3) Figures to the right indicate maximum marks.

1. a) When are two paths in a space X said to be path homotopic ?
b) Prove that path homotopy is an equivalence relation in the set of all paths in X. 8
c) Give an example of a space X , and two paths f , and g , in X , which start and end at the same points, such that:
i) f is homotopic to g
ii) f is not homotopic to g .
2. a) Define the group $\Pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$, and define the multiplication in this group.
b) Prove that $\Pi_{1}\left(\mathbb{R}^{\mathrm{n}}, 0\right)=\{\mathrm{e}\}$, the trivial group with one element.
c) Let $A \subseteq X$, and $r=X \longrightarrow A$ be a map such that $r(a)=a$ for each $a \in A$. If $a_{0} \in A$, prove that $r_{A}: \Pi_{1}\left(X, a_{0}\right) \longrightarrow \Pi_{1}\left(A, a_{0}\right)$ is surjective.
3. a) Define a covering space, and give an example.
b) Define a universal covering space, and give an example.
c) Let $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$ be a covering map, let $\mathrm{p}\left(\mathrm{e}_{0}\right)=\mathrm{b}_{0}$. Prove that any path $f:[0,1] \longrightarrow B$, beginning at b_{0}, has a unique lifting to a path $\tilde{f}:[0,1] \longrightarrow E$, beginning at e_{0}.
d) If $\mathrm{g}: \mathrm{S}^{\prime} \rightarrow \mathrm{S}^{\prime}$ is $\mathrm{g}(\mathrm{z})=z^{3}$, calculate explicitly the map $\mathrm{g}_{*}: \Pi_{1}\left(\mathrm{~S}^{\prime}, 1\right) \rightarrow \Pi_{1}\left(S^{\prime}, 1\right) .6$
4. a) Prove that there is no retraction of B^{2} on to S^{\prime}.
b) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=z^{n}+a_{n-1} z^{n-1}+\ldots .+a_{1} z+a_{0}$, with $\left|a_{n-1}\right|+\left|a_{n-2}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|<1$.
Prove that the equation $f(z)=0$ has a root in the unit ball $B=\{z \in \mathbb{C} \backslash|z|<1\} .6$
c) Find the fundamental group of the space $B \times S^{\prime}$, where $B=\{z \in \mathbb{C} \backslash|z|<1\}$, $S^{\prime}=\{z \in \mathbb{C} \backslash|z|=1\}$.
5. a) State the Seifert-van Kampen theorem. 4
b) Prove that if $\mathrm{n} \geq 2$, the n -sphere S^{n} is simply connected.
c) i) Prove that \mathbb{R}^{1} and \mathbb{R}^{n} are not homeomorphic if $n \neq 1$.
ii) Prove that \mathbb{R}^{2} and \mathbb{R}^{n} are not homeomorphic if $\mathrm{n} \neq 2$. 3
6. a) Prove that $\Pi_{1}\left(\mathrm{X} \times \mathrm{Y}, \mathrm{x}_{0} \times \mathrm{y}_{0}\right)$ is isomorphic to $\Pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right) \times \Pi_{1}\left(\mathrm{Y}, \mathrm{y}_{0}\right)$.
b) Prove that $\Pi_{1}\left(\mathrm{P}^{2}, \mathrm{y}\right)$ is a group of order 2 , where P^{2} is the projective plane.
c) Let Y have the discrete topology, and $P: X \times Y \rightarrow X$ is $p(x, y)=x$. Prove that p is a covering map.
7. a) Prove that the fundamental group of the figure eight is not abelian.
b) Let a and b be points of S^{2}, and A a compact space and let $f: A \rightarrow S^{2} \backslash\{a, b\}$ be continuous. If a and b lie in the same component of $S^{2} \backslash f(A)$, prove that f is null homotopic.
8. a) State the Jordan Separation theorem. Define all the terms that you use.
b) Give an example of a space X and two closed curves Y_{1} and Y_{2} in X such that: $\mathbf{6}$
i) Y_{1} separates X
ii) Y_{2} does not separate X .
c) Let $\mathrm{p}: \mathrm{E} \longrightarrow \mathrm{B}$, with E simply connected.

Given any covering map $\mathrm{r}: \mathrm{Y} \longrightarrow \mathrm{B}$, prove that there is a covering map $\mathrm{q}: \mathrm{E} \longrightarrow \mathrm{Y}$ at $\mathrm{r}_{0} \mathrm{q}=\mathrm{p}$.
M.A./M.Sc. Mathematics (2008 Pattern) (Sem. - IV) Examination, 2010 MT-803 : DIFFERENTIAL MANIFOLDS (New)

Time : 3 Hours

Max. Marks : 80
N.B.: 1) Attempt any five questions.
2) All questions carry equal marks.
3) Figures to the right indicate full marks.

1. a) Let W be a k -dimensional linear subspace of \mathbb{R}^{R}. Prove that there is an orthogonal transformation $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that carries W onto the subspace $\mathbb{R}^{k} \times 0$ of \mathbb{R}^{n}.
b) i) Define the volume of a parametrized manifold.
ii) Prove that the volume of a parametrized manifold is invariant under reparametrisation.
2. a) Define a k-manifold without boundary in \mathbb{R}^{n}.
b) Let $\mathrm{f}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}$ be any differentiable function.

Prove that the graph of f, i.e. $G(f)=\left\{(x, f(x)) \backslash x \in \mathbb{R}^{k}\right\}$ is a k-manifold without boundary in \mathbb{R}^{k+1}.
c) Show that $\mathrm{I}=[0,1]$ is a $1-$ manifold in \mathbb{R}^{\prime}. What is its boundary, $\partial \mathrm{I}$? 6
3. a) Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be $C^{2}, \mathrm{M}=\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}} \mid \mathrm{f}(\mathrm{x})=0\right\}$, $\mathrm{N}=\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}} \mid \mathrm{f}(\mathrm{x}) \geq 0\right\}$. Suppose $M \neq \phi$, and $D f(x)$ has rank 1 an each point of M. Prove that N is an n-manifold in \mathbb{R}^{n} and $\partial \mathrm{N}=\mathrm{M}$.
b) Find the area of a hemisphere of radius a >0.
4. a) Let T be a linear map between two vector spaces V and W ;i.e. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$.
i) Define the dual map T^{*}.
ii) Prove that $T^{*}(f \otimes g)=T^{*} f \otimes T^{*} g$, where f and g are tensors on V.
b) Give an example of an non zero alternating 2-tensor on \mathbb{R}^{3}.
c) Let $\pi \in \mathrm{S}_{\mathrm{k}+l}$ be the permutation.

$$
\pi=\left(\begin{array}{llll}
1 & 2 & 3 \ldots \mathrm{k} & \mathrm{k}+1 \ldots \mathrm{k}+l \\
\mathrm{k}+1 \mathrm{k}+2 \ldots \mathrm{k}+l & 1 & 2 \ldots \mathrm{k}
\end{array}\right) .
$$

Prove that $\operatorname{sgn} \pi=(-1)^{\mathrm{k} l}$.
5. a) Let M be a k-manifold in \mathbb{R}^{n}, and $p \in M$,
i) Define the tangent space to M at $\mathrm{p}, \mathrm{T}_{\mathrm{p}} \mathrm{M}$.
ii) Prove that $T_{p} M$ is well defined. 4
b) Let $\mathrm{M}=\left\{\mathrm{x} \in \mathbb{R}^{3} \backslash \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}=1\right\}$.

Evaluate $\mathrm{T}_{\mathrm{p}} \mathrm{M}$ where $\mathrm{p}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
c) Let $\alpha: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\mathrm{n}}$ be C^{2}. Prove that $\alpha_{*}(\mathrm{x} ; \mathrm{v})$ is the velocity vector of the curve $\mathrm{y}(\mathrm{t})=\alpha(\mathrm{x}+\mathrm{tv})$ corresponding to the parameter value $\mathrm{t}=0$.
6. a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{2}
i) Define the 1 -form $\mathrm{df}(\mathrm{x})(\mathrm{x} ; \mathrm{v})$.
ii) Let $\mathrm{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\mathrm{e}^{\mathrm{x}_{1}} \cdot \sin \left(\mathrm{x}_{2} \mathrm{x}_{3}\right)$.

Evaluate df $(1,2,3)((1,2,3) ;(4,5,6))$.
b) i) What is an exact form? Give an example.
ii) What is a closed form? Give an example.
7. a) Let $\alpha: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be C^{∞}. If w is an l-form on \mathbb{R}^{n}, prove that $\alpha^{*}(d w)=d\left(\alpha^{*} w\right)$.
b) If $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{6}$ is C^{∞}, prove that $\mathrm{d} \alpha_{1} \wedge \mathrm{~d} \alpha_{3} \wedge \mathrm{~d} \alpha_{5}=(\operatorname{det} \operatorname{D} \alpha(1,3,5)) \mathrm{dx}_{1} \wedge \mathrm{dx}_{2} \wedge \mathrm{dx}_{3}$.
c) Let $\mathrm{A}=(0,1)^{3}, \alpha: \mathrm{A} \rightarrow \mathbb{R}^{4}$ is $\alpha(\mathrm{s}, \mathrm{t}, \mathrm{u})=\left(\mathrm{s}, \mathrm{u}, \mathrm{t},(2 \mathrm{u}-\mathrm{t})^{2}\right), \mathrm{Y}_{\alpha}=\alpha(\mathrm{A})$.

Evaluate $\int_{\mathrm{Y}_{\alpha}} \mathrm{x}_{1} \mathrm{dx}_{1} \wedge \mathrm{dx}_{4} \wedge \mathrm{dx}_{3}+2 \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{dx}_{1} \wedge \mathrm{dx}_{2} \wedge \mathrm{dx}_{3}$.
8. a) When is a manifold said to be orientable ?

4
b) Give an example of a orientable manifold. Justify your answer.
c) Prove that any n-manifold in \mathbb{R}^{n} is an oriented manifold.
d) State the generalised Stokes theorem. Define all the terms that you use.

M.A./M.Sc. Mathematics (2004 Pattern) (Sem. - IV) Examination, 2010 MT-803 : MEASURE AND INTEGRATION (Old)

Time: 3 Hours

Max. Marks : 80
N.B.: 1) Attempt any five questions.
2) Figures to the right indicate full marks.
3) B denotes σ-algebra of subsets of X, μ denotes measure on the measure space (X, B).

1. a) Suppose that for each α in a dense set D of real numbers there is assigned a set $\mathrm{B}_{\alpha} \in \mathrm{B}$ such that $\mu\left(\mathrm{B}_{\alpha} \sim \mathrm{B}_{\beta}\right)=0$ for $\alpha<\beta$. Prove that there is a measurable function f such that $\mathrm{f} \leq \alpha$ a.e. on B_{α} and $\mathrm{f} \geq \alpha$ a.e. on $\mathrm{X} \sim \mathrm{B}_{\alpha}$.
b) If $\mathrm{E}_{\mathrm{i}} \in B$ for $\mathrm{i}=1,2, \ldots$, then prove that $\mu\left(\bigcup_{\mathrm{i}=1}^{\infty} \mathrm{E}_{\mathrm{i}}\right) \leq \sum_{\mathrm{i}=1}^{\infty} \mu \mathrm{E}_{\mathrm{i}}$.
c) Show that if μ is complete and $\mathrm{E}_{1} \in \mathrm{~B}$ and $\mu\left(\mathrm{E}_{1} \Delta \mathrm{E}_{2}\right)=0$, then $\mathrm{E}_{2} \in \mathrm{~B}$.
2. a) Let (X, B) be a measurable space, $\left\{u_{n}\right\}$ a sequence of measures that converge setwise to a measure μ, and $\left\{f_{n}\right\}$ a sequence of non-negative measurable functions that converge pointwise to the function f .
Prove that $\int \mathrm{fd} \mu \leq \underline{\lim } \int \mathrm{f}_{\mathrm{n}} \mathrm{d} \mu_{\mathrm{n}}$.
b) State and prove Monotone convergence theorem.
c) Prove that the union of a countable collection of positive set is positive.
3. a) Let f be an extended real-valued function defined on X . Then prove that the following statements are equivalent :
i) $\{\mathrm{x}: \mathrm{f}(\mathrm{x})<\alpha\} \in \mathrm{B} \forall \alpha$
ii) $\{\mathrm{x}: \mathrm{f}(\mathrm{x}) \leq \alpha\} \in \mathrm{B} \forall \alpha$
iii) $\{\mathrm{x}: \mathrm{f}(\mathrm{x})>\alpha\} \in \mathrm{B} \forall \alpha$
iv) $\{\mathrm{x}: \mathrm{f}(\mathrm{x}) \geq \alpha\} \in \mathrm{B} \forall \alpha$.
b) If f and g are non-negative measurable functions and a, b are non-negative constants, prove that $\int a f+b g=a \int f+b \int g$.
c) If v_{1} and v_{2} are any two signed measures, then prove that $\alpha v_{1} / \beta v_{2}$ is signed measure, where α, β are real numbers.
4. a) Let $(X, B . \mu)$ be a σ-finite measure space and va σ-finite measure defined on B. . Then prove that there is a measure v_{0}, singular with respect to μ and a measure v_{1}, absolutely continuous with respect to μ such that $\mathrm{v}=\mathrm{v}_{0}+\mathrm{v}_{1}$.
b) Let (X, B, μ) be a finite measure space and g be an integrable function such that for some constant M.
$\left|\int g \phi d \mu\right| \leq M\|\phi\|_{p}$ for all simple functions ϕ. Prove that $g \in L^{2}$.
c) If v is a signed measure such that $\mathrm{v} \perp \mu$ and $\mathrm{v} \ll \mu$, prove that $\mathrm{v}=0$.
5. a) Let μ be a measure on an algebra a, μ^{*} the outer measure induced by μ and E any set. Prove that for $\varepsilon>0$, there is a set $\mathrm{A} \in \mathrm{a}$ with $\mathrm{E} \subseteq \mathrm{A}$ and $\mu^{*} \mathrm{~A} \leq \mu^{*} \mathrm{E}+\varepsilon$. Also there is a set $\mathrm{B} \in \mathrm{a}_{\sigma \delta}$ with $\mathrm{E} \subseteq \mathrm{B}$ and $\mu^{*} \mathrm{E}=\mu^{*} \mathrm{~B}$. 6
b) Prove that the set function μ^{*} is an outer measure.
c) Let $\left\{\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)\right\}$ be a countable disjoint collection of measurable rectangles whose union is a measurable rectangle $A \times B$. Prove that $\lambda(\mathrm{A} \times \mathrm{B})=\Sigma \lambda\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)$.
6. a) Let E and F be disjoint sets. Show that $\mu_{*} \mathrm{E}+\mu_{*} \mathrm{~F} \leq \mu_{*}(\mathrm{E} \cup \mathrm{F}) \leq \mu_{*} \mathrm{E}+\mu^{*} \mathrm{~F} \leq \mu^{*}(\mathrm{E} \cup \mathrm{F}) \leq \mu^{*} \mathrm{E}+\mu^{*} \mathrm{~F}$.
b) By assuming $\mu_{*} \mathrm{E} \leq \mu^{*} \mathrm{E}$ and $\mathrm{E} \in$ a prove that $\mu_{*} \mathrm{E}=\mu \mathrm{E}=\mu^{*} \mathrm{E}$. .
c) Let B be a μ^{*}-measurable set with $\mu^{*} \mathrm{~B}<\infty$. Prove that $\mu_{*} \mathrm{~B}=\mu^{*} \mathrm{~B}$.
7. a) Let μ^{*} be a topologically regular outer measure on X. Prove that each Borel set is μ^{*}-measurable.
b) Let μ be a finite measure defined on a σ-algebra m which contains all the Baire sets of a locally compact space X . If μ is inner regular, prove that it is regular.
c) Let K be a compact set, O an open set with $\mathrm{K} \subseteq \mathrm{O}$. Prove that $\mathrm{K} \subseteq \mathrm{U} \subseteq \mathrm{H} \subseteq \mathrm{O}$. where U is a σ-compact open set and H is a compact G_{δ}.
8. a) Let F be a closed subset of X topological space. Then F is a locally compact

Hausdorff space and the Baire sets of F are those sets of the form $\mathrm{B} \cap \mathrm{F}$, where B is a Baire set in X .
b) Let $\bar{\mu}$ be a nonnegative extended real valued function defined on the class of open subsets of X and satisfying
i) $\overline{\mu \mathrm{O}}<\infty$, if $\overline{\mathrm{O}}$ is compact
ii) $\bar{\mu} \mathrm{O}_{1} \leq \bar{\mu} \mathrm{O}_{2}$, if $\mathrm{O}_{1} \subseteq \mathrm{O}_{2}$
iii) $\bar{\mu}\left(\mathrm{O}_{1} \cup \mathrm{O}_{2}\right)=\bar{\mu} \mathrm{O}_{1}+\bar{\mu} \mathrm{O}_{2}$, if $\mathrm{O}_{1} \cap \mathrm{O}_{2}=\phi$
iv) $\bar{\mu}\left(\mathrm{UO}_{\mathrm{i}}\right) \leq \sum_{\mathrm{i}} \mu \mathrm{O}_{\mathrm{i}}$
v) $\bar{\mu}(\mathrm{O})=\sup \{\mu \mathrm{U} \mid \overline{\mathrm{U}} \subseteq \mathrm{O}, \overline{\mathrm{U}}$ is compact $\}$

Prove that set function μ^{*} defined by $\mu^{*} \mathrm{E}=\inf \{\bar{\mu} \mathrm{O}: \mathrm{E} \subseteq \mathrm{O}\}$ is a topologically regular outer measure.
c) Prove that every σ-bounded set E is contained in a σ-compact open set O .
[3721] - 404

M.A./M.Sc. (Sem. - IV) Mathematics (2008 Pattern) Examination, 2010 MT 804 : ALGEBRAIC TOPOLOGY (New)

Time : 3 Hours
Max. Marks : 80

N.B.: 1) Attempt any five questions.
 2) Figures to the right indicate full marks.

1. a) Give an example of a covariant function.
b) Let $\mathrm{i}: \mathrm{S}^{\mathrm{n}-1} \rightarrow \mathrm{~B}^{\mathrm{n}}$ be the inclusion map, and $\mathrm{I}: \mathrm{S}^{\mathrm{n}-1} \rightarrow \mathrm{~S}^{\mathrm{n}-1}$ be the identity. Prove that there exists $f: B^{n} \rightarrow S^{n-1}$ with $f \circ i=I$, if and only if the identity map I is homotopic to a constant map.
c) i) Define a strong deformation retract. 4
ii) Give an example of a strong deformation retract.
2. a) Let $\mathrm{A} \subseteq \mathrm{X}$. Prove that the relation of being homotopic relative to A is an equivalence relation.
b) Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{S}^{\mathrm{n}}$ be continuous mappings such that $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \neq 0 \forall \mathrm{x} \in \mathrm{X}$. Prove that f is homotopic to g 4
c) i) When is a space said to be contractible ? 2
ii) Give an example of a space that is contractible. 2
iii) Give an example of a space that is not contractible. 4
3. a) If f is any path in X, and g is a null path in X such that $f * g$ exists, prove that $\mathrm{f} * \mathrm{~g}$ and f are equivalent.
b) Give an example to two paths f and g between two points x_{0} and x_{1} in a space X which are not equivalent.
c) Let $x_{0}, x_{1} \in X$, where X is path connected. Prove that $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{1}\right)$ are isomorphic.
4. a) If A is a strong deformation retract of X , show that the inclusion map $\mathrm{i}: \mathrm{A} \rightarrow \mathrm{X}$ induces an isomorphism $\mathrm{i}^{*}: \pi_{\mathrm{i}}(\mathrm{A}, \mathrm{a}) \rightarrow \pi_{1}(\mathrm{X}, \mathrm{a})$ for any point $a \in A$.
b) Prove that a contractible space has a trivial fundamental group. 4
c) i) If X and Y are homeomorphic, and path connected prove that $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ and $\pi_{1}\left(\mathrm{Y}, \mathrm{y}_{0}\right)$ are isomorphic. 4
ii) Is the converse true ? 4
5. a) Define the higher homotopy groups $\pi_{\mathrm{n}}\left(\mathrm{X}, \mathrm{x}_{0}\right)$. 4
b) Prove that every non-constant complex polynomial has a root in complex numbers. 8
c) Draw a torus and calculate its fundamental group. 4
6. a) i) Define a covering map. 2
ii) Give an example of a covering map. 2
b) Prove that a covering map is α local homeomorphism. 4
c) Let G be a group acting on a space X . When is the action of G on X said to be properly discontinuous? Give an example. 8
7. a) Define a fibration, and give an example of a fibration. 4
b) Let $\mathrm{p}: \tilde{\mathrm{X}} \rightarrow \mathrm{X}$ be a fibration with unique path lifting. Suppose that f and g are paths in \tilde{X} with $\mathrm{f}(0)=\mathrm{g}(0)$, and $\mathrm{pf} \sim \mathrm{pg}$, prove that $\mathrm{f} \sim \mathrm{g}$. 6
c) i) Find the fundamental group of $\mathbb{R}^{2} \backslash\{0\}$. 3
ii) Is \mathbb{R}^{1} homeomorphic to \mathbb{R}^{2} ? 3
8. a) When is a set of points in \mathbb{R}^{n} said to be geometrically independent ? Give an example. 4
b) Define the boundary $\partial_{p} C_{p}$ of a p-chain C_{p}. 6
c) Prove that the boundary of the boundary of a p-chain is zero. 6

M.A./M.Sc. (Sem. - IV) Mathematics (2004 Pattern) Examination, 2010 MT 804 : MATHEMATICAL METHODS - II (Old)

Time : 3 Hours

Max. Marks : 80
N.B.: 1) Answer any five questions.
2) Figures to the right indicate full marks.

1. a) Solve the non-homogeneous Fredholm integral equation

$$
\mathrm{u}(\mathrm{x})=\mathrm{x}+\lambda \int_{0}^{1}\left(\mathrm{xt}^{2}+\mathrm{x}^{2} \mathrm{t}\right) \mathrm{u}(\mathrm{t}) \mathrm{dt} .
$$

b) Find the eigenvalues of the homogeneous Fredholm equation with degenerate Kernel

$$
\begin{equation*}
\mathrm{u}(\mathrm{x})=\lambda \int_{0}^{\pi}\left[\cos ^{2} \mathrm{x} \cos 2 \mathrm{t}+\cos 3 \mathrm{x} \cos ^{3} \mathrm{t}\right] \mathrm{u}(\mathrm{t}) \mathrm{dt} \tag{8}
\end{equation*}
$$

2. a) Prove that eigenvalues of a real symmetric kernel are real.

5
b Show that eigen functions of a symmetric kernel corresponding to different eigenvalues are orthogonal.
c) The multiplicity of any non-zero eigenvalue is finite, when

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{b}|k(x, t)|^{2} d x d t<\infty \text {, where } k(x, t)=k(t, x) \tag{5}
\end{equation*}
$$

3. a) Prove that every continuous function $g(s)$ defined by $g(s)=\int k(s, t) h(t) d t$ where $\mathrm{k}(\mathrm{s}, \mathrm{t})$ is symmetric kernel, can be expanded as a series of eigen functions of $\mathrm{k}(\mathrm{s}, \mathrm{t})$.
b) Find Neumann series solution for the integral equation

$$
\mathrm{u}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\lambda \int_{0}^{1} \mathrm{xe}^{\mathrm{t}} \mathrm{u}(\mathrm{t}) \mathrm{dt} .
$$

4. a) In the light of Fredholm alternative discuss the existence of solutions to the non-homogeneous Fredholm equation

$$
\mathrm{u}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\lambda \int_{0}^{\pi}\left[\cos ^{2} \mathrm{x} \cos 2 \mathrm{t}+\cos 3 \mathrm{x} \cos ^{3} \mathrm{t}\right] \mathrm{u}(\mathrm{t}) \mathrm{dt}
$$

b) Find the resolvent kernel of the integral equation

$$
\mathrm{u}(\mathrm{x})=1+\lambda \int_{0}^{1}(1-3 \mathrm{xt}) \mathrm{u}(\mathrm{t}) \mathrm{dt}
$$

5. a) Find the curve with fixed end points such that its rotation about x-axis gives rise to a surface of minimum surface area.
b) Determine the extremal of the functional $I[y(x)]=\int_{-l}^{l}\left[\frac{1}{2} \mu y^{\prime \prime}(x)+\rho y(x)\right] d x$ subject to $y(-l)=y(l)=y^{\prime}(-l)=y^{\prime}(l)=0$. Here, μ, ρ are given constants.
6. a) Find the extremals of the functional

$$
\begin{equation*}
\mathrm{I}=\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left(2 \mathrm{yz}-2 \mathrm{y}^{2}-\mathrm{y}^{\prime 2}-\mathrm{z}^{\prime 2}\right) \mathrm{dx} \tag{8}
\end{equation*}
$$

b) Find the curve of fixed length $\mathrm{L}>1$, joining the points $(0,0)$ and $(1,0)$ in the plane that lies above the x -axis and encloses the maximum area between itself and the x -axis.
7. a) Show that if $y(x)$ is a piecewise continuous function and $\int_{x_{0}}^{x_{1}} y(x) \eta(x)=0$, holds for arbitrary continuous fuinctions $\eta(x)$ satisfying the conditon :

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} \eta(x)=0 \text { then } y(x) \text { is a constant. } \tag{4}
\end{equation*}
$$

b) Explain the Legendre condition.
c) Find the curve joining given points A and B which is traversed by a particle moving under gravity from A and B in the shortest time. (This is known as the Brachistochrone problem.)
8. a) Show that the triangle with greatest area A for a given perimeter is equilateral. $\mathbf{8}$
b) Find geodesics on a unit sphere.

M.A./M.Sc. Examination, 2010
 MATHEMATICS (2005 Pattern)
 MT 806 : Lattice Theory (Old)

Time : 3 Hours

Max. Marks: 80

N.B.: 1) Answer any five questions.
 2) Figures to the right indicate full marks.

1. a) Prove that the set A of all real valued functions defined on X : for $f, g \in A$, set
$f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in X$ is a lattice.
b) Let $\langle\mathrm{p} ; \leq>$ be a post in which inf H exists for all $\mathrm{H} \subseteq$ P. Show that $\langle\mathrm{p} ; \leq>$ is a lattice.
c) Prove that I is a prime ideal of a lattice L if and only if there is a homomorphism Q of L onto C_{2} with $\mathrm{I}=\mathrm{Q}^{-1}\{0\}$.
2. a) Let L and K be lattices, let θ and \oint be congrence relations of L and K respectively. Define the relation $\theta \times \oint$ on $\mathrm{L} \times \mathrm{K}$ by $\langle\mathrm{a}, \mathrm{b}\rangle \equiv\langle\mathrm{c}, \mathrm{d}\rangle(\theta \times \theta \times \oint)$ if and only if $a \equiv c(\theta)$ and $b \equiv d(\oint)$. Then show that $\theta \times \oint$ is a congruence relation on $L \times K$ and conversely, every congruence relation of $L \times K$ is of this form.

8
b) Prove that dual of a distributive lattice is distributive.

4
c) Prove that if a lattice L is finite then L and $\operatorname{Id}(L)$, the ideal lattice of L, are isomorphic.

3. a) Let L be a lattice and $\mathrm{Con}(\mathrm{L})$ be the set of all its congruences. Then prove
that Con (L) is a lattice.
b) State and prove Nachbin Theorem. 8
c) Show that $\mathrm{N}_{\mathrm{s}} \cong \mathrm{L} \times \mathrm{K}$ implies that L or K has only one element.
4. a) Prove that a lattice is modular if and only if it does not contain a pentagon.

8
b) State and prove Hashimoto theorem.
5. a) Let L be a lattice of finite length. If L is semimodular then prove that any two maximal chains of L are of same length.
b) Let L be semimodular lattice. Prove that if p and q are atoms of $\mathrm{L}, \mathrm{a} \in \mathrm{L}$ and $a<a \vee q \leq a \vee p$, then prove that $a \vee p=a \vee q$.
c) Let L be a lattice of finite length. If L satisfies the condition : $a, b \in L$ with $\mathrm{a} \neq \mathrm{b}$, a and b cover $\mathrm{a} \wedge \mathrm{b}$, then $\mathrm{a} \vee \mathrm{b}$ covers a and b . Then prove that L is semimodular.
6. a) Let L be a lattice and $\mathrm{a}, \mathrm{b} \in \mathrm{L}$. Then prove that the following conditions are equivalent.
i) a Mb (i.e. (a, b) is a modular pair)
ii) $\psi_{b}: x \rightarrow x \wedge b, x \in[a, a \vee b]$ is onto.
iii) $Q_{a}: y \rightarrow y \vee a, y \in[a \wedge b, a]$ is one to one.
b) Let L be a distributive lattice, I be an ideal and D be a dual ideal of L such that $\mathrm{I} \cap \mathrm{D}=\mathrm{Q}$. Then prove that there exists a prime P such that $\mathrm{I} \subseteq \mathrm{P}$ and $\mathrm{P} \cap \mathrm{D}=\mathrm{Q}$.
7. a) Prove that a lattice L is Boolean if and only if it is isomorphic to some field of sets.
b) Prove that a lattice L is conditionally complete, if every bounded non-empty
subset of L has g.l.b.
c) Illustrate with an example that the ideals of a Boolean lattice do not form a Boolean lattice.
8. a) Define an isotone function f on a lattice L into L and prove that if L is a complete lattice and f is an isotone function on L into L then $f(a)=a$ for some $a \in L$.

b) If L is a finite Boolean lattice then prove that the ideal lattice $\operatorname{Id}(\mathrm{L})$ of L is
Boolean.
c) Prove that any modular lattice can be embedded in a complete modular lattice.

M.A./M.Sc. (Sem. - II) (2008 Pattern) Examination, 2010
 MATHEMATICS
 MT-603 : Groups and Rings (New)

Time : 3 Hours
Max. Marks : 80
N.B.: i) Attempt any five questions.
ii) Figures to right indicate full marks.

1. a) If $\mathrm{G}=(\mathrm{a})$ is a cyclic group of order n , generated by a , then prove that for each positive divisor k of n , the group G has exactly one subgroup of order k namely $\left(a^{\frac{n}{k}}\right)$.
b) i) If a group G contains elements a and b such that $|a|=4,|b|=2$ and $a^{3} b=b a$, then find $|a b|$.
ii) Show that $\mathrm{U}(10) \neq \mathrm{U}(8)$.
c) If the group G is with exactly eight elements of order 10 , how many cyclic subgroups of order 10 does G have? Is G cyclic?
2. a) If the pair of cycles $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and $\beta=\left(\beta_{1}, \ldots, \ldots, \beta_{n}\right)$ have no entries in common, then prove that $\alpha \beta=\beta \alpha$.
b) i) What are possible orders for the elements of S_{6} and A_{6} ?
ii) What is the maximum order of any element in S_{10} ?
c) i) Find two groups H and K such that $H \neq K$ but, $\operatorname{Aut}(H) \simeq \operatorname{Aut}(K)$.
ii) Find $\operatorname{Aut}(Z)$.
3. a) State and prove Lagrange's theorem for finite groups. Is the converse of Lagrange's theorem true? Justify.
b) i) If a group G contains elements of orders 1 through 10 , what is the minimum possible order of G ?

8
ii) Show that in a group G of odd order, the equation $x^{2}=$ a has a unique solution for all a in G .
4. a) If G and H are two finite cyclic groups, then prove that $\mathrm{G} \oplus \mathrm{H}$ is cyclic iff $|\mathrm{G}|$ and $|\mathrm{H}|$ are co-prime.
b) If $G=\left\{e, x, x^{2}, y, y x, y x^{2}\right\}$ is a non-abelian group with $|x|=3,|y|=2$ then prove that $x y=y x^{2}$.
c) If G is a non-abelian group of order p^{3}, p is a prime, and $Z(G) \neq\{e\}$ then prove that $|Z(G)|=p$.
5. a) If ϕ is a group homomorphism from a group G to $\overline{\mathrm{G}}$ with kernel ϕ as K , then prove that $\frac{G}{K} \simeq \phi(G)$.
b) Determine all homomorphisms from Z_{6} to Z_{15}.

6
c) Find all abelian groups (upto an isomorphism) of order 360 .
6. a) Suppose that G is a finite abelian group of order $\mathrm{p}^{\mathrm{n}} \mathrm{m}$ where p is a prime that does not divide m, then prove that $G=H \times K$ where $H=\left\{x \in G \mid x^{p^{n}}=e\right\}$ and $K=\left\{x \in G \mid x^{m}=e\right\}$. Also show that $|H|=p^{n}$.
b) What is the smallest positive integer n such that there are two nonisomorphic groups of order n ?

5
c) Calculate the number of elements of order 2 in the group Z_{16}.

7. a) If G is a finite group and p is a prime such that p^{k} divides $|G|$, then prove that
G has at least one subgroup of order p^{k}.
b) Use Sylow's theorem to prove that any group of order 99 is isomorphic to Z_{99} or $Z_{9} \oplus Z_{11}$.

5
c) Calculate all conjugacy classes for quaternian group Q_{8}. 5
8. a) Prove that if H is a subgroup of a finite group G and $|H|$ is a power of a
prime p then H is contained in some Sylow p-subgroup of G.
b) Find all the Sylow Z-subgroups of S_{3}. 5
c) Suppose that G is a group of order 48, show that the intersection of any two distinct Sylow 2-subgroups of G has order 8.

M.A./M.Sc. (Sem. - II) (2004 Pattern) Examination, 2010 MATHEMATICS
 MT-603 : Group Theory (Old)

Time : 3 Hours
Max. Marks: 80

N.B.: i) Attempt any five questions.
 ii) Figures to the right indicate full marks.

1. a) If ϕ : is a homomorphism of the group G into the group G^{\prime}, then prove that $\phi(1)=1$

$$
\phi\left(\mathrm{x}^{\mathrm{n}}\right)=(\phi(\mathrm{x}))^{\mathrm{n}} \forall \mathrm{x} \in \mathrm{G}, \mathrm{n} \in \mathrm{Z} .
$$

b) Prove that no two of the additive groups $\mathrm{Z}, \mathrm{Q}, \mathbb{I}$ are isomorphic to each other.
c) Show that for $\mathrm{n} \geq 2$, the ($\mathrm{n}-1$) transpositions (12) (23) ($\mathrm{n}-1 \mathrm{n}$) generates S_{n}.
2. a) If m and n are integers, not both zero, then prove that the subgroup $\langle m, n>$ of Z generated by them is the cyclic subgroup generated by their g.c.d.
b) Determine the orders of all elements of S_{4}.

5
c) If G has trivial centre, then show that for $\mathrm{a} \neq \mathrm{b}$ in G , the inner automorphisms j_{a} and j_{b} are distinct. Deduce that S_{3} has at least six distinct inner auto-morphisms.
3. a) If G is a finite group of order n such that for every divisor d of n, G has at most one subgroup of order d, then prove that G is cyclic.
b) Prove that the converse of Lagrange's theorem holds in S_{4} but does not hold in A_{4}.
c) If $\mathrm{G}=\mathrm{S}_{3}$ and $\mathrm{H}=\langle(23)\rangle$, find $\mathrm{x} \in \mathrm{S}_{3}$ such that $\mathrm{xH} \neq \mathrm{Hx}$.
4. a) Prove that a group of order $\mathrm{p}^{\mathrm{n}}, \mathrm{p}$ is a prime and $\mathrm{n} \geq 1$ has non-trivial centre.
b) Find all conjugacy classes of Q_{8}, quaternian group, and hence write its class equation.
c) i) Show that SL (n, z) $\Delta \mathrm{GL}(\mathrm{n}, \mathrm{z})$. 3
ii) In any group G show that ab and ba are conjugate to each other.
5. a) If H and K are subgroups of G , at least one being normal in G , then prove that $\mathrm{HK}=\mathrm{KH}$ is a subgroup of G . What happens if both are normal subgroups?
b) Show that the Klein's four group V_{4} is a normal subgroup of S_{4}. Find $\frac{S_{4}}{V_{4}}$.
c) Prove that a finite abelian group of square free order is cyclic.
6. a) If $\phi: G \rightarrow \mathrm{G}^{\prime}$ is a surjective homomorphism with Kernal N , then prove that $\frac{\mathrm{G}}{\mathrm{N}} \simeq \mathrm{G}^{\prime}$.
b) If T is the multiplicative group of complex numbers of absolute value 1 then show that $\frac{\mathbb{R}}{\mathrm{Z}} \simeq \mathrm{T}$.
c) If G acts on the set X, then show that for $s \in G, x \in X$, stab $(\mathrm{sx})=\mathrm{s}(\operatorname{stab}(\mathrm{x})) \mathrm{s}^{-1}$.
7. a) If the prime power p^{k} divides the order n of a finite group G then prove that G contains a subgroup of order p^{k}.
b) Prove or disprove any group of order 33 is cyclic. 5
c) Find the number of elements of order five in a group of order 25 .
8. a) If a finite group G of order $\mathrm{n}=\mathrm{k} l,(\mathrm{k}, l)=1$, has normal subgroups A and B of orders k, l respectively then prove that $\mathrm{G}=\mathrm{AB}$ (direct).
b) If $H \Delta G$ and if H and $\frac{G}{H}$ are both soluble, then prove that G is soluble.
c) Prove or disprove A group of order 200 is soluble.

M.A./M.Sc. (Sem. - IV) Examination, 2010 MATHEMATICS (2008 Pattern)
 MT-802 : Combinatorics (New)

Time : 3 Hours
Max. Marks: 80

N.B.: 1) Attempt any five questions.
 2) Figures to the right indicate full marks.

1. A) How many sequences of length 5 can be formed using the digits $0,1,2, \ldots, 8,9$ with and without repeatation? Also find the number of sequences of length 5 that can be formed using the digits $0,1,2, \ldots, 8,9$ with the property that exactly two of the ten digits appear (Eg. : 00550).
B) How many arrangements of the seven letters in the word "SYSTEMS" have the E occurring somewhere before the M ? How many arrangements have E somewhere before the M and the three ' S 's grouped consecutively ?
C) What is the probability that 2 (or more) people in a random group of 25 people have a common birthday?
2. A) Among all arrangements of "WISCONSIN" without any pair of consecutive vowels, what fraction have W adjacent to an I ?
B) How many integer solution are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=30$, with $x_{i} \geq 0$? How many solutions with $x_{i} \geq i$? How many solutions with $x_{1} \geq 2, x_{2} \geq 2, x_{3} \geq 4, x_{4} \geq 1$?
C) Use generating functions to find the number of ways to collect \$ 15 from 20 distinct people if each of the first 19 people can give a dollar (or nothing) and twentieth person can give either $\$ 1$ or $\$ 5$ or nothing.
3. A) Using summation method find a generating function for $a_{r}=r(r+2)$. 6
B) Prove by combinatorial argument that $C(n, 1)+6 C(n, 2)+6 C(n, 3)=n^{3}$ and evaluate $1^{3}+2^{3}+\ldots+(n-1)^{3}+n^{3}=$?
C) Find the number of r-digit quaternary sequences with an even number of 0 's and odd number of 1 's.
4. A) State and prove Burnside's theorem.
B) Use generating functions to the set of simultaneous recurrence relations given below
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\mathrm{b}_{\mathrm{n}-1}+\mathrm{c}_{\mathrm{n}-1}, \mathrm{~b}_{\mathrm{n}}=3^{\mathrm{n}-1}-\mathrm{c}_{\mathrm{n}-1}$
$\mathrm{c}_{\mathrm{n}}=3^{\mathrm{n}-1}-\mathrm{b}_{\mathrm{n}-1}, \mathrm{a}_{1}=1=\mathrm{b}_{1}=\mathrm{c}_{1}$.
5. A) State and prove the Inclusion-Exclusion formula.
B) Solve the recurrence relation
$a_{n}=a_{1} a_{n-1}+a_{2} a_{n-2}+\ldots+a_{n-1} a_{1}$
where $\mathrm{a}_{0}=0$ and $\mathrm{a}_{1}=1$.
6
C) Find the coefficient of x^{25} in $\left(1+x^{3}+x^{8}\right)^{10}$.
6. A) How many different 3 -colorings of the bands of an n hand baton are there, if the baton is unoriented?
B) Find the pattern inventory of black-white edge colouring of a tetrahedron.
C) Find the number 7 bead necklaces distinct under rotations using 3 black and 4 white beads.
7. A) How many ways are there to send six different birthday cards denoted $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$ to three aunts and three uncles, denoted $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}$ if aunt A_{1} would not like cards C_{2} and C_{4}; if A_{2} would not like C_{1} or C_{5}; if A_{3} likes all cards; if U_{1} would not like C_{1} or C_{5}; if U_{2} would not like C_{4}; and if U_{3} would not like C_{6} ?

6
B) Find the exponential generating function for the number of ways to place r (distinct) people into three different rooms with at least one person in each room. Repeat with an even number of people in each room.
C) Using combinatorial argument, prove that $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\ldots+\binom{n}{n}^{2}=\binom{2 n}{n}$.
8. A) How many ways are there to select 25 toys from seven types of toys with between two and six of each type ?
B) Solve the following recurrence relations when $\mathrm{a}_{0}=1$.
i) $a_{n}^{2}=2 a_{n-1}^{2}+1$
ii) $a_{n}=-n a_{n-1}+n!$.

M.A./M.Sc. (Sem. - IV) Examination, 2010
 MATHEMATICS (2004 Pattern)
 MT-802 : Hydrodynamics (Old)

Max. Marks : 80
N.B.: 1) Answer any five questions.
2) Figures to the right indicate marks.

1. a) Explain Lagranges method of description and hence derive equation of
continuity.
b) A two dimensional unsteady velocity field is given by $u=x(1+3 t), v=y$. Find the equation of stream line.
c) Derive the relation between potential function and stream function in polar co-ordinate system.
2. a) Show that if the motion is irrotational, then the velocity vector is the gradient
of a scalar function of position.
b) A two dimensional incompressible flow field has the x component of velocity given by the expression $\mathrm{u}=\mathrm{e}^{-\mathrm{x}}(\mathrm{x} \sin \mathrm{y}-\mathrm{y} \cos \mathrm{y})$. Determine y component of velocity. Is this flow irrotational?
c) In a cylindrical co-ordinate system ($\mathrm{r}, \theta, \mathrm{z}$) the radial component of velocity $\bar{q}(u, v)$ of a two dimensional flow is $u(r, \theta)=\frac{3}{2} r^{3 / 2} \cos \theta$. Find the expression for v when $\mathrm{v}=0$ at $\theta=0$.
b) Test whether the motion specified by $\overline{\mathrm{q}}=\frac{\mathrm{k}^{2}(\overline{\mathrm{j}}-\mathrm{y} \overline{\mathrm{i}})}{\mathrm{x}^{2}+\mathrm{y}^{2}}(\mathrm{k}=$ constant $)$ is of the potential kind and if so, determine the velocity potential.
3. a) State and prove Kutta-Joukowski theorem. 8
b) State and prove the theorem of Blasius. 8
4. a) Define vortex pair and find the complex potential of vortex pair. 8
b) Find the equation of the stream lines due to uniform line sources of strength m through the points $\mathrm{A}(-\mathrm{c}, 0), \mathrm{B}(\mathrm{c}, 0)$ and a uniform line sink of strength 2 m through the origin.
5. a) Define Stokes stream function. $\mathbf{5}$
b) Discuss the flow due to a circular cylinder of mass moving with velocity u.
c) A two dimensional flow towards α normal boundary is found to be characterised by α normal component of velocity that varies directly with distance from the boundary. Determine the stream function.
6. a) Explain shear rate, volumetric deformation and simple shear.
b) The velocity components of a certain flow are given as $u=\propto(x+y)$, $v=b\left(x^{2}-y^{2}\right)+6 y, w=-2 d z$ where a, b and d are constants. Represent the motion as the sum of rotation and deformation of fluid element.
7. a) Obtain the relation between stress and rate of strain components.
b) What is the complex potential for two-dimensional fluid motion? Discuss the flow for which $w=z^{2}$.

M.A./M.Sc. (Semester - IV) Examination, 2010
 (2008 Pattern)
 MATHEMATICS
 MT 805 : Lattice Theory (New)

Max. Marks: 80

N.B.: 1) Answer any five questions.
 2) Figures to the right indicate full marks.

1. a) Let the algebra $\mathrm{L}=\langle\mathrm{L} ; \wedge, v\rangle$ be a lattice. Set $\mathrm{a} \leq \mathrm{b}$ if and only if $\mathrm{a} \wedge \mathrm{b}=\mathrm{a}$. Then prove that $\mathrm{L}^{\mathrm{P}}=\langle\mathrm{L} ; \leq\rangle$ is a poset and the poset L^{P} is a lattice.
b) Let I be an ideal and let D be a dual ideal. If $\mathrm{I} \cap \mathrm{D} \neq \phi$ then show that $\mathrm{I} \cap \mathrm{D}$ is a convex sublattice, and every convex sublattice can be expressed in this form in one and only way.
c) Find all neutral elements of $\mathrm{C}_{2} \times \mathrm{C}_{3}$, where $\mathrm{C}_{\mathrm{i}}, \mathrm{i}=2,3$ are chains of i elements.
2. a) Prove that I is a prime ideal of a lattice L if and only if there is a homomorphism ϕ of L onto C_{2} with $I=\phi^{-1}\{0\}$. 6
b) Prove that if L is finite then L and $\operatorname{Id}(\mathrm{L})$ (ideal lattice of L) are isomorphic. 4
c) Let L be a lattice and $\mathrm{Con}(\mathrm{L})$ be the set of all its congruences. Then prove that Con (L) is a lattice. 6
3. a) Prove that a lattice is modular if and only if it does not contain a pentagon. 8
b) State and prove Nachbin theorem. 8
4. a) Let L be a distributive lattice with 0 . Show that $\operatorname{Id}(\mathrm{L})$, the ideal lattice of a lattice L , is pseudo complemented. Is the converse true? Justify. 8
b) State and prove Hashimoto theorem. 8
5. a) Let L be a finite distributive lattice. Then prove that the map $Q: a \rightarrow r(a)$,
where $r(a)=\{j \in J(L) \mid j \leq a\}$, is an isomorphism between L and $H(J(L))$. 7
b) Let L be a lattice, let P be a prime ideal of L, and let $a, b, c \in L$. Prove that if $a \vee(b \wedge c) \in P$ then $(a \vee b) \wedge(a \vee c) \in P$.
c) Prove that a lattice L is distributive if it satisfies: $(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)=(x \vee y) \wedge(y \vee z) \wedge(z \vee x)$ for $x, y, z \in L$.
6. a) Prove that every lattice is a chain if and only if its every ideal is a prime
ideal.
b) Prove that in a Boolean lattice, an ideal is maximal if and only if it is prime.
c) Prove that any finite distributive lattice is pseudo complemented.
7. a) State and prove Stone's separation theorem for a distributive lattice.
b) Prove that in a modular lattice, an element is standard if and only if it is distributive.
c) Show that $\mathrm{N}_{5} \cong \mathrm{~L} \times \mathrm{K}$ implies that the lattice L or K has only one element.
8. a) Prove that the set of all neutral elements of a lattice forms a sublattice.
b) Prove that the complemented elements of a distributive lattice form a sublattice.
c) Prove that every ideal of a distributive lattice is a standard ideal and conversely.

M.A./M.Sc. (Semester - IV) Examination, 2010
 (2004 Pattern)
 MATHEMATICS
 MT 805 : Field Theory (Old)

Time : 3 Hours
Max. Marks: 80
N.B.: 1) Attempt any five questions.
2) Figures to the right indicate marks.

1. a) Let k be a field and $\mathrm{F} \subset \mathrm{E}$ extension fields of k . Show that $[E: k]=[E: F][F: k]$.
b) Let α be algebraic over a field k. Show that $k(\alpha)=k[\alpha]$. 5
c) Find the degree of $K=\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}. Justify your answer.
2. a) Let $\alpha \in E$, where E is a field extension of a field F. Suppose L is a field containing F and let $\sigma: \mathrm{E} \rightarrow \mathrm{L}$ be an isomorphism over F from E into L . Let $f(x) \in F[x]$ be such that $f(\alpha)=0$. Show that $\sigma(\alpha)$ is a root of $f(x)$.
b) Let k be a filed and f a polynomial in $k[X]$ of degree ≥ 1. Show that there exists an extension E of k in which f has a root.
c) Let K be a splitting field of the polynomial $f(X) \in k[X]$. If E is another splitting field of f, show that there is an isomorphism $\sigma: E \rightarrow K$ inducing identity on k. show also that if $k \subset k \subset k^{a}$, where k^{a} is an algebraic closure of k, then any embedding of E in k^{a} inducing the identity on k must be an isomorphism of E onto K .
3. a) If K_{1}, K_{2} are normal over k and are contained in some filed L, show that $\mathrm{K}_{1} \cap \mathrm{~K}_{2}$ is normal over k .
b) Let $\mathrm{E}=\mathrm{F}(\alpha)$, where α is algebraic over F , of odd degree. Show that $\mathrm{E}=\mathrm{F}\left(\alpha^{2}\right)$.
c) Let $\mathrm{E} \supset \mathrm{F} \supset \mathrm{k}$ be a tower of fields. Show that $[\mathrm{E}: \mathrm{k}]_{\mathrm{S}}=[\mathrm{E}: \mathrm{F}]_{\mathrm{S}}[\mathrm{F}: \mathrm{k}]_{\mathrm{S}}$
4. a) Construct a finite filed of 9 elements.
b) Let E be a finite extension of a field k . Suppose there are only a finite number of fields F such that $k \subset F \subset E$. Show that there is $\alpha \in E$ such that $E=k(\alpha)$.
c) Which of the following is a Galois extension? Justify your answer.
i) $\mathbb{Q}\left(2^{1 / 3}\right) / \mathbb{Q}$
ii) \mathbb{Q} (i) $/ \mathbb{Q}$
5. a) Let K be a field and let G be a finite group of automorphisms of K of order n. Let $k=K^{G}$ be the fixed field. Show that K is a finite Galois extension of k, and its Galois group is G. Show that $[\mathrm{K}: \mathrm{k}]=\mathrm{n}$.
b) Let $f(X)=X^{3}-3 \in Q[X]$. What is the splitting field of $f(X)$? Find the Galois group of $f(X)$, by explicitly writing all the automorphisms.

6 a) Let K be a Galois extension of a field k with cyclic Galois group having 6 elements. Determine the number of intermediate fields between k and K .
b) Let $f(X)=X^{3}+a X+b \in Q[X]$ be an irreducible polynomial. What is the discriminant of $f(X)$? State when the Galois group $f(X)$ is A_{3} and S_{3}.
c) Let E / k be a finite extension. Let $\alpha \in \mathrm{E}$. Define the $\operatorname{trace} \operatorname{Tr}_{\mathrm{E} / \mathrm{k}}(\alpha)$. Show that if E is a finite separable extension of k , then $\mathrm{Tr}: \mathrm{E} \rightarrow \mathrm{k}$ is a nonzero functional.
7. a) Let k be a field, n an integer $>0,(\mathrm{n}, \mathrm{p})=1$, if $\mathrm{ch} . \mathrm{k}=\mathrm{p}>0$. Assume that there is a primitive n-th root of unity in k. Let K / k be a cyclic extension of degree n. Prove that there exists $\alpha \in K$ such that $K=k(\alpha)$, and α satisfies $X^{n}-a=0$ for some $a \in k$.
b) Let E be a separable extension of k. Suppose E / k is a solvable extension.

Show that E is solvable by radicals.
8. a) If n is odd >1, show that $\phi_{2 n}(X)=\phi_{n}(-X)$, where $\phi_{n}(X)=\prod_{\zeta}(X-\zeta)$, where ζ varies over primitive n-th roots of 1 .
b) Find the Galois group of the following polynomials :
i) $X^{3}-X+1$
ii) $\mathrm{X}^{2}-2$.
c) Show that the order of a finite field is always a power of a prime.

M.A./M.Sc. (Semester - II) Examination, 2010 (2004 Pattern and 2008 Pattern)
 MATHEMATICS
 MT-602 : Differential Geometry
 (Old and New)

Time : 3 Hours
Max. Marks : 80
Instructions : i) Attempt any five questions.
ii) Figures to the right indicate full marks.

1. a) Let S be an n-surface in $\mathbb{R}^{n+1}, S=f^{-1}$ (c) where $f: U \rightarrow \mathbb{R}$ is such that $\nabla f(q) \neq 0$ for all $q \in S$. Suppose $g: U \rightarrow \mathbb{R}$ is a smooth function and $p \in S$ is an extreme point of g on S. Prove that there exists a real number λ such that $\nabla \mathrm{g}(\mathrm{p})=\lambda \nabla \mathrm{f}(\mathrm{p})$.

6
b) Find the integral curve through $p=(1,1)$ of the vector field $f\left(x_{1}, x_{2}\right)=\left(x_{2},-x_{1}\right)$.
c) Sketch the level sets $\mathrm{f}^{-1}(\mathrm{c})$, for $\mathrm{n}=0$, 1 , of each function at the heights indicated
i) $f\left(x_{1}, x_{2} \ldots, x_{n+1}\right)=x_{n+1} ; c=-1,0,1$
ii) $f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=x_{1}-x_{2}^{2}-\ldots-x_{n+1}^{2} ; c=0,1$.
2. a) Let $S=f^{-1}$ (c) be an n-surface in \mathbb{R}^{n+1}, where $f: U \rightarrow \mathbb{R}$ is such that $\nabla \mathrm{f}(\mathrm{q}) \neq 0$ for all $\mathrm{q} \in \mathrm{S}$, and let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If $\alpha: I \rightarrow U$ is any integral curve of X such that $\alpha\left(t_{0}\right) \in S$ for some $t_{0} \in I$, then prove that $\alpha(t) \in S$ for all $t \in I$.
b) For $0 \neq\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \in \mathbb{R}^{n+1}$ and $b \in \mathbb{R}$, show that the n-plane $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n+1} x_{n+1}=b$ is an n-surface.
c) Find the length of the parametrized curve $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ defined by $\alpha(t)=(\sqrt{2} \cos 2 t, \sin 2 t, \sin 2 t)$.
3. a) The 1 -sheeted hyperboloid H is defined as

$$
-\frac{x_{1}^{2}}{a^{2}}+x_{2}^{2}+\ldots+x_{n+1}^{2}=1(a>0)
$$

What happens to the spherical image of H when $\mathrm{a} \rightarrow \infty$? When $\mathrm{a} \rightarrow 0$?
b) Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$ be a pair of orthogonal unit vectors in \mathbb{R}^{3}, and $\mathrm{a} \in \mathbb{R}$. Prove that $\alpha(t)=(\cos a t) e_{1}+(\sin a t) e_{2}$ is a geodesic in the 2 -sphere $\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}=1$ in \mathbb{R}^{3}.
c) Find the curvature k of the oriented plane curve $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1, a \neq 0, b \neq 0$.
4. a) Let S be a 2-surface in \mathbb{R}^{3} and let $\alpha: I \rightarrow S$ be a geodesic in S with $\alpha \neq 0$. Prove that a vector field X tangent to S along α is parallel along α if and only if both $\|\mathrm{X}\|$ and the angle between X and α are constant along α.
b) Compute the Weingarten map for the circular cylinder $x_{2}^{2}+x_{2}^{3}=a^{2}$ in $\mathbb{R}^{3}(a \neq 0)$.
c) Define:
i) Gauss-Kronecker curvature
ii) Mean curvature.
5. a) Let S be an n-surface in \mathbb{R}^{n+1},oriented by the unit normal vector field N. Let $p \in S$ and $v \in S_{p}$. For every parametrized curve $\alpha: I \rightarrow S$, with $\dot{\alpha}\left(t_{0}\right)=v$ for some $t_{0} \in I$ prove that $\ddot{\alpha}\left(t_{0}\right) \cdot N(p)=L_{p}(v) \cdot v$.
b) Find the normal curvature $\mathrm{k}(\mathrm{v})$ for each tangent direction v at the given point $\mathrm{p}=(1,0, \ldots, 0)$ of the given n -surface $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}+1}=1$ oriented by $\frac{\nabla \mathrm{f}}{\|\mathrm{\nabla f}\|}$.
c) Let S be an n -surface in $\mathbb{R}^{\mathrm{n}+1}$ and let $\mathrm{f}: \mathrm{S} \rightarrow \mathbb{R}^{\mathrm{k}}$. If f is smooth then prove that $\mathrm{fo} \phi: \mathrm{U} \rightarrow \mathbb{R}^{\mathrm{k}}$ is smooth for each local parametrization $\phi: \mathrm{U} \rightarrow \mathrm{S}$.
6. a) Let V be a finite dimensional vector space with dot product and let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{V}$ be a self-adjoint linear transformation on V. Prove that there exists an orthonormal basis for V consisting of eigenvectors of L .
b) Let $\mathrm{a}>\mathrm{b}>0$ and define $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
\varphi(\theta, \phi)=((a+b \cos \phi) \cos \theta,(a+b \cos \phi) \sin \theta, b \sin \phi)
$$

Show that φ is a parametrized 2-surface in \mathbb{R}^{3}.
c) For each $a, b, c, d \in \mathbb{R}$, prove that the parametrized curve

$$
\alpha(\mathrm{t})=(\cos (\mathrm{at}+\mathrm{b}), \sin (\mathrm{at}+\mathrm{b}), \mathrm{ct}+\mathrm{d})
$$

is a geodesic in the cylinder $x_{1}^{2}+x_{2}^{2}=1$ in \mathbb{R}^{3}.
7. a) Let $\phi: U \rightarrow \mathbb{R}^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Prove that there exists an open set $\mathrm{U}_{1} \subset \mathrm{U}$ about p such that $\phi\left(\mathrm{U}_{1}\right)$ is an n-surface in $\mathbb{R}^{\mathrm{n}+1}$.
b) Sketch the level set $\mathrm{f}^{-1}(0)$ and typical values $\nabla \mathrm{f}(\mathrm{p})$ of the vector field for $\mathrm{p} \in \mathrm{f}^{-1}(0)$, when $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-1$.
8. a) Find the Gaussian curvature of the parametrized 2-surface

$$
\varphi(\theta, \phi)=((a+b \cos \phi) \cos \theta,(a+b \cos \phi) \sin \theta, b \sin \phi) \text { in } \mathbb{R}^{3}
$$

b) Let U be an open set in $\mathbb{R}^{\mathrm{n}+1}$, let $\mathrm{f}: \mathrm{U} \rightarrow \mathbb{R}$ be a smooth function, and let $\alpha: I \rightarrow U$ be an integral curve of ∇f. Show that

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{f} \text { o } \alpha)(\mathrm{t})=\|\nabla \mathrm{f}(\alpha(\mathrm{t}))\|^{2}, \forall \mathrm{t} \in \mathrm{I}
$$

c) Sketch the surface of revolution obtained by rotating C about the x_{1} axis, where C is the curve $\mathrm{x}_{2}=1$.

M.A./M.Sc. (Semester - I) (2008 Pattern) Examination, 2010 MATHEMATICS
 MT-504: Number Theory

N.B. : 1) Attempt any five questions.
 2) Figures to the right indicate full marks.

1. a) If g is the greatest common divisor of b and c, then prove that there exist
integers x_{0} and y_{0} such that $g=(b, c)=b x_{0}+c y_{0}$.
b) Prove that if x and y are odd then $\mathrm{x}^{2}+\mathrm{y}^{2}$ is even, but not divisible by 4 . 5
c) Show that $n^{4}+n^{2}+1$ is composite if $n>1$. 5
2. a) Prove that if $(\mathrm{a}, \mathrm{m})=1$, then $\mathrm{a}^{\phi(\mathrm{m})} \equiv 1(\bmod \mathrm{~m})$. 6
b) What is the last digit in the ordinary decimal representation of 3^{400} ? 5
c) Show that $2,4,6, \ldots ., 2 \mathrm{~m}$ is a complete residue system modulo m if m is odd. $\mathbf{5}$
3. a) Let p denote a prime. Prove that $\mathrm{x}^{2} \equiv-1(\bmod \mathrm{p})$ has solutions if and only if $\mathrm{p}=2$ or $\mathrm{p} \equiv 1(\bmod 4)$.
b) Find all integers that give the remainders $1,2,3$ when divided by $3,4,5$ respectively.

4
c) Find all integers x and y such that $147 x+258 y=369$. 4
4. a) Prove that for every positive integer $n, \sum_{d / n} \phi(d)=n$.
b) Find the highest power of 70 that divides 533 ! 4
c) i) Prove that $\mu(\mathrm{n}) \mu(\mathrm{n}+1) \mu(\mathrm{n}+2) \mu(\mathrm{n}+3)=0$ if n is a positive integer.
ii) Evaluate $\sum_{\mathrm{j}=1}^{\infty} \mu(\mathrm{j}!)$
5. a) Prove that, if p and q are distinct odd primes, then

$$
\begin{equation*}
\left(\frac{\mathrm{p}}{\mathrm{q}}\right)\left(\frac{\mathrm{q}}{\mathrm{p}}\right)=(-1)^{\{(\mathrm{p}-1) / 2\}\{(\mathrm{q}-1) / 2\}} . \tag{6}
\end{equation*}
$$

b) Find the value of $\left(\frac{a}{p}\right)$ in each of the 12 cases, $a=-1,2,-2,3$ and $p=11,13,17$. $\quad 6$
c) Find the value of $\left(\frac{-42}{61}\right)$.
6. a) Prove that the product of two primitive polynomials is primitive.
b) Prove that among the rational numbers, the only ones that are algebraic integers are the integers $0, \pm 1, \pm 2$, (i.e. \mathbb{Z}).
c) Find the minimal polynomial of the algebraic number $\frac{(1+\sqrt[3]{7})}{2}$.
7. a) Prove that if α is any algebraic number, then there is a rational integer b such that $\mathrm{b} \alpha$ is an algebraic integer.
b) For any algebraic number α, define m as the smallest positive rational integer such that $\mathrm{m} \alpha$ is an algebraic integer. Prove that if $\mathrm{b} \alpha$ is an algebraic integer, where b is a rational integer, then $m \mid b$.
c) Prove that $\sqrt{3}-1$ and $\sqrt{3}+1$ are associates in $\mathrm{Q}(\sqrt{3})$.
8. a) Let m be a negative square-free rational integer. Prove that the field $\mathrm{Q}(\sqrt{\mathrm{m}})$ has units ± 1, and these are the only units except in the cases $m=-1$ and $m=-3$. Prove that if $m=-1$ then units are ± 1 and $\pm i$ where as if $m=-3$ then units are $\pm 1, \frac{(1 \pm \sqrt{-3})}{2}$ and $\frac{(-1 \pm \sqrt{-3})}{2}$.
b) If α and $\beta \neq 0$ are integers in $\mathrm{Q}(\sqrt{\mathrm{m}})$, and if $\alpha \mid \beta$, Prove that $\bar{\alpha} \mid \bar{\beta}$ and $N(\alpha) \mid N(\beta)$.
c) Prove that $1+\mathrm{i}$ is a prime in Q (i)

M.A.M.Sc. (Semester - III) (2008 Pattern) Examination, 2010 MATHEMATICS (Optional) MT-703: Mechanics (New)

Time : 3 Hours

Max. Marks : 80
N.B.: i) Attempt any five questions.
ii) Figures to the right indicate full marks.

1. a) If the forces acting on a particle are conservative, show that the total energy is
conserved.
b) Use D'Alembert's principle to determine the equation of motion of a simple pendulum.
c) A particle of mass m moves in $x y$ plane with position vector $\bar{\Sigma}=i a \cos \mathrm{wt}+\mathrm{jb} \sin \mathrm{wt}$, where a, b and w are positive constants and $\mathrm{a}>\mathrm{b}$. Show that
i) Particle moves in ellipse
ii) The force acting on the particle is always directed towards the origin.
iii) The force field is conservative.
2. a) Classify constraints with suitable examples. $\mathbf{5}$
b) Derive Lagrange's equation of motion from Hamilton's principle.
c) A particle of mass moves in a plane under the action of a conservative force f with components.
$F_{x}=-k^{2}(2 x+y), F_{y}=-k^{2}(x+2 y)$,
where k is a constant. Find the total energy of the motion, the Lagrangian and the equation of motion of the particle.
3. a) Find the Euler-Lagrange differential equation satisfied by twice differentiable function $y(x)$ which extremizes the functional
$I(y(x))=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{1}\right) d x$,
where y is prescribed at the end points.
6
b) If L is a Lagrangian for a system of n degree of freedom satisfying the Lagrangian equations, then show that

$$
\mathrm{L}^{1}=\mathrm{L}+\frac{\mathrm{df}\left(\mathrm{q}_{\mathrm{j}} \mathrm{t}\right)}{\mathrm{dt}}, \mathrm{j}=1.2, \ldots \mathrm{n},
$$

also satisfies the Lagrangian equation, where f is any arbitrary, but differential function of its arguments.
c) Show that the curve is a catenary for which the area of surface of revolution is minimum when revolved about y-axis.
4. a) Reduce the two body problem to one body problem in central force motion of two bodies about their centre of mass.
b) Derive the viral theorem, if the forces are derivable from a potential and show that $\overline{\mathrm{T}}=\frac{\mathrm{n}+1}{2} \overline{\mathrm{~V}}$.
c) Find the shape of the plane curve of fixed length l whose end points lie on the x -axis and area enclosed by it and the x -axis is maximum.
5. a) Define orthonormal transformation. Show that finite rotation of a rigid body about a fixed point of the body is not commutative.
b) Define Eulerian angles. Find the matrix of transformation from a space set of axes to body set of axes interms of Eulerian angles.
c) Obtain the Euler's equations for motion of a rigid body when one point of the body remains fixed.
6. a) Derive Hamilton's principle for non-conservative system from D'Alembert's principle and hence deduce from it the Hamilton's principle for conesrvative system.
b) Deduce Newton's second law of motion from Hamilton's principle.
c) A particle of mass m is moving on the surface of the sphare of radius r in the gravitational field. Use Hamilton's principle to show the equation of motion is given by

$$
\ddot{\theta}-\frac{\mathrm{p}_{\phi} \cos \theta}{\mathrm{m}^{2} \mathrm{r}^{4} \sin ^{3} \theta}+\frac{\mathrm{g}}{\mathrm{r}} \sin \theta=0,
$$

where p_{ϕ} is the constant of angular momentum.
7. a) Define Posson's bracket and show that it is invariant under canonical transformation.
b) If A is the matrix of a rotation through 180° about any axis. Show that if

$$
\mathrm{P}_{ \pm}=\frac{1}{2}(1 \pm \mathrm{A}), \mathrm{P}_{ \pm}^{2} \text { then }=\mathrm{P}_{ \pm} . \text {Obtain the elements of } \mathrm{P}_{ \pm} \text {in any system. }
$$

c) Derive with usual notation

$$
\frac{\mathrm{d}[\mathrm{u}, \mathrm{v}]}{\mathrm{dt}}=\left[\frac{\mathrm{du}}{\mathrm{dt}}, \mathrm{v}\right]+\left[\mathrm{u}, \frac{\mathrm{dv}}{\mathrm{dt}}\right]
$$

8. a) Define and explain the following terms:
i) Degree of freedom
ii) Generalized momentum
iii) Virtual work
b) Find the kinetic energy of rotation of a rigid body with respect to the principal axes in terms of Eulerian angles.
c) For a particle the kinetic energy and potential energy is given by

$$
\begin{aligned}
& \mathrm{T}=\frac{1}{2} \mathrm{mi}^{2} \\
& \mathrm{~V}=\frac{1}{\mathrm{r}}\left(1+\frac{\dot{\mathrm{r}}^{2}}{\mathrm{C}^{2}}\right)
\end{aligned}
$$

Find the Hamiltonian H and determine

1) Whether $\mathrm{H}=\mathrm{T}+\mathrm{V}$
2) Whether $\frac{d H}{D t}=0$

M.A/M.Sc. (Semester - III) (2004 Pattern) Examination, 2010 MATHEMATICS
 MT-703: Functional Analysis (Old)

Time : 3 Hours
Max. Marks : 80

Instructions : i) Attempt any five questions.
ii) Figures to the right indicate full marks.

1. a) i) Define normed linear space.
ii) In normed linear space show that
A) $\|\|x\|-\| y\|\leq\| x-y \|$;
B) addition and scalar multiplication are jointly continuous on N .
b) Give one example of Banach space with explanation. Is \mathbb{R}^{n}, a Banach space with the norm defined by

$$
\|\mathrm{x}\|=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\mathrm{x}_{\mathrm{i}}\right|^{2}\right)^{\frac{1}{2}} ?
$$

Justify your steps.
2. a) Let M be a closed linear subspace of a normed linear space N, and let x_{0} be a vector not in M, then prove that there exists a functional f_{0} in N^{*} such that $\mathrm{f}_{0}(\mathrm{M})=0$ and $\mathrm{f}_{0}\left(\mathrm{x}_{0}\right) \neq 0$.
b) Let N and N^{\prime} be normed linear spaces and T a linear transformation of N into N^{\prime}. Prove that the following conditions on T are all equivalent to one another :
i) T is continuous;
ii) T is continuous at the origin;
iii) T is bounded on N ;
iv) If S is the closed unit sphere in N, then its image $T(S)$ is a bounded set in N^{\prime}.
c) True/ False ? Justify your answer.

If N is complete, then N is reflexive.
3. a) State and prove the uniform boundedness theorem.
b) If N is a normed linear space, then prove that N is naturally imbedded into $\mathrm{N}^{* *}$.
c) If N is a Banach space, then prove that $S=\{x \mid\|x\|=1\}$ is complete.
4. a) Define Hilbert space and give one example of Hilbert space with explanation.
b) State and prove the parallelogram law.
c) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
5. a) If N is a normal operator on a Hilbert space H, then prove that $\left\|\mathrm{N}^{2}\right\|=\|\mathrm{N}\|^{2}$.
b) Let H be a Hilbert space, and let $\left\{\mathrm{e}_{\mathrm{i}}\right\}$ be an orthonormal set in H. Prove that the following conditions are all equivalent to one another :
i) $\left\{e_{i}\right\}$ is complete
ii) $x \perp\left\{e_{i}\right\} \Rightarrow x=0$
iii) If x is an arbitrary vector in H, then $x=\sum\left(x, e_{i}\right) e_{i}$
iv) If x is an arbitrary vector in H, then $\|x\|^{2}=\sum\left|\left(x, e_{i}\right)\right|^{2}$.
c) Show that the difference $\mathrm{P}=\mathrm{P}_{1}-\mathrm{P}_{2}$ of two projections on a Hilbert H is a projection on H if and only if $\mathrm{P}_{1} \leq \mathrm{P}_{2}$.
6. a) Prove that an operator T on a Hilbert space H is unitary if and only if it is an
isometric isomorphism of H onto itself.
b) If A is a positive operator on a Hilbert space H, then prove that $I+A$ is non singular.
c) Prove that the adjoint operation $\mathrm{T} \rightarrow \mathrm{T}^{*}$ on $\mathrm{B}(\mathrm{H})$ has the following properties:

4
i) $\mathrm{T}^{* *}=\mathrm{T}$
ii) $\left\|\mathrm{T}^{*}\right\|=\|\mathrm{T}\|$.
7. a) With usual notations prove that $\left(l_{1}^{\mathrm{n}}\right)^{*}=l_{\infty}^{n}$.
b) Consider the operator T defined on l_{2} by

$$
\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \ldots . .\right)=\left(0, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \ldots . .\right)
$$

Is T unitary? Why?
c) Let y be a fixed vector in a Hilbert space H, and consider the function f_{y} defined on H by $f_{y}(x)=(x, y)$. Prove that f_{y} is a linear transformation, and $\left\|f_{y}\right\|=\|y\|$.
8. a) If T is a normal operator on a Hilbert space H, then prove that $M_{i}^{\prime} s$ are pairwise orthogonal.
b) If T is a normal operator on a Hilbert space H, then prove that each M_{i} reduces T .
c) Let T be an operator on H , and prove the following statements :
i) T is singular if and only if $0 \in \sigma\{\mathrm{~T}\}$;
ii) If A is non singular, then $\sigma\left(\mathrm{ATA}^{-1}\right)=\sigma(\mathrm{T})$.

