

University of Pune

S. Y. B. Sc. [Botany]

C	Class – S.Y. B .Sc. (To be implemented From June 2014)		
Paper	Semester - I	Semester – II	
Ι	Taxonomy of Angiosperms and Plant community	Plant Anatomy and Embryology	
II	Plant Physiology	Plant Biotechnology	
III	Practicals based on Theory courses (Pa	per I and II)	

Equivalence of previous syllabus at S.Y.B.Sc. Botany

Paper	2008 Pattern	2013 Pattern
	(Implemented from 2009)	(To be implemented from 2014)
Paper I	BO-211: Fundamentals of Plant	BO-211: Taxonomy of Angiosperms and
Semester I	Systematics and Plant Ecology	Plant community
Paper II	BO-212:Fundamentals of Plant	BO-212:Plant Physiology
Semester I	Physiology	
Paper I	BO-221: Structural	BO-221: Plant Anatomy and
Semester I	Botany(Anatomy,	Embryology
	Embryology and Palynology)	
Paper II	BO-222: Fundamentals of Plant	BO-222: Plant Biotechnology
Semester I	Biotechnology	
Practical	Practical based on theory courses	Practical based on theory courses
Course	(Paper I and Paper II)	(Paper I and Paper II)

S.Y.B.Sc. Botany (Semester I, Paper I) (Angiosperms and Plant Community (48 Lectures)

Taxonomy of Anglosperms and Plant Community (48 Lectures)	
1. Introduction to Plant Taxonomy	3L
1.1 Definition, scope, objectives and importance	
1.2 Identification, classification, nomenclature	
1.3 Concept of Systematics	
2. Systems of classification	6L
2.1 Types of systems with their merits and limitations- a)Artificial system- Carl	Linnaeus,
b)Natural system -Bentham and Hooker, c) Phylogenetic system- Engler and Prantl	
3. Taxonomic literature	2L
Flora, monograph, revisions, manuals, journals, periodicals and references books.	
4. Sources of data for Systematics	6L
4.1 Morphology	
4.2 Anatomy	
4.3 Cytology	
4.4 Embryology	
4.5 Phytochemistry	
4.6 Molecular biology	
5. Botanical Nomenclature	6L
5.1 History	
5.2 Binomial nomenclature	
5.3 ICBN- principles	
5.4 Rules of nomenclature	
5.5 Coining of generic names and specific epithets.	
5.6 Ranks and endings of taxa names	
5.7 Principle of priority	
5.8 Effective and valid publications	
5.9 Single and double authority citation	
5.10 Nomina conservanda	

6. Study of Plant Families

Study of following families with reference to systematic position, salient features, floral formula, floral diagram and any five examples with their economic importance – Annonaceae, Meliaceae, Myrtaceae, Rubiaceae, Solanaceae, Asclepiadaceae, Euphorbiaceae and Amaryllidaceae

7. Computer in taxonomy

- 7.1 Concept of herbarium their advantages and limitations
- 7.2 Digital /e-herbarium and their advantages
- 7.3 Data bases: concept and needs.
- 7.4 Use of computer in plant classification

8. Introduction to ecology

- 8.1 Definition
- 8.2 Concept
- 8.3 Autecology and synecology
- 8.4 Ecosystem and its components: biotic and abiotic.
- 8.5 Food chain
- 8.6 Food web
- 8.7 Ecological pyramids

9. Ecological grouping of the plants

Ecological grouping of the plants with reference to their significance of adaptive external and internal features: a) Hydrophytes, b) Mesophytes c)Xerophytes d) Halophytes with examples.

References-

- 1. Chopra G.L.- Angiosperms
- Cronquist, A. 1968. The Evolution and Classification of Flowering Plants. Thomas Nel and Sons Ltd. London.
- 3. Datta S.C.- A Hand Book of Systematic Botany
- Davis P.H and V.H Heywood 1963. Principles of Angiosperm Taxonomy. Oliver and Boyd London.
- 5. Gurucharan Singh 2005- Systematics theory and practice (Oxford IBH)
- 6. Heywood V.H 1967. Plant Taxonomy, London.
- 7. Lawrence, G.H.M 1951. Taxonomy of Vascular Plants. N.Y.

11L

5L

4L

5L

- 8. Lawrence G.H.M 1955. An Introduction to Plant Taxonomy N.Y.
- 9. Naik V.N.- Taxonomy of Angiosperms.
- 10. Pande B.P 1997. Taxonomy of Angiosperms. S.Chand.
- 11. Priti Shukla and Shital Mishra- An introduction to Taxonomy of angiosperms
- 12. Rendle A.B. 1925. The Classification of flowering plants. 2 Vols. London.
- 13. Santapau H. 1953. The Flora of Khandala on the Western Ghats of India.
- 14. Singh V. and D.K Jain, 1981 Taxonomy of Angiosperms. Rastogi Publication, Meerut.
- 15. Sharma O.P, Plant taxonomy (Tata Mc grow Hill)
- Stewart W.N. and Rathwell G.W. 1993. Paleobotany and the Evolution of plants. Cambridge University Press.
- 17. Swingle D.B. 1946. A Text book of Systematic Botany. Mc Graw Hill Book Co. New York.
- 18. Takhtajan A. 1969. Flowering Plants; Origin and Disposal.
- 19. Theodore Cooke(1903)- The flora of The Presidency of Bombay Vol. I, II, III
- 20. V.V.Shivrajan-Introduction to Principles plant taxonomy
- 21. Yadav S.R. and Sardesai M.R.- Flora of Kolhapur District.

S. Y. B. Sc. [Botany] (Semester I, Paper II) Plant Physiology (48 Lectures)

1.	Introduction to Plant Physiology	2L
	Brief history, Scope and applications of plant physiology	
2.	Plant – water relations	8L
	2.1 Physico-chemical properties of water	
	2.2 Membrane structure, permeability and aquaporin	
	2.3 Diffusion – Definition, factors affecting diffusion, importance of diffusion in pl	ants
	2.4 Osmosis - Definition, types of solutions - hypotonic, hypertonic and isotonic,	endosmosis
	and exosmosis, concept of osmotic pressure (OP), turgor pressure (TP), w	all pressure
	(WP), Diffusion pressure deficit (DPD), relation between OP, TP and DPD, role	e of osmosis
	in plants.	
	2.5 Plasmolysis – Definition, mechanism, deplasmolysis, significance of plasmolysis	sis
	2.6 Imbibition – Concept, mechanism and significance	
3.	Absorption of water	3L
	3.1 Role of water in plants	
	3.2 Concept of water potential and capillary water	
	3.3 Mechanisms of water absorption	
	3.4 Factors affecting rate of water absorption	
4.	Ascent of sap	4L
	4.1 Introduction and definition.	
	4.2 Theories of ascent of sap	
	4.3 Vital theories: Jamin – Chame theory and Bose theory	
	4.3.1 Physical force theories: a) Capillary theory, b) Imbibitional theory,	
	c) Atmospheric pressure theory,	
	4.3.2 Transpiration pull or cohesion-tension theory, evidences and objection	ons
	4.4 Factors affecting ascent of sap	
5.	Transpiration	6L
	5.1 Definition	
	5.2 Types of transpiration – cuticular, lenticular and stomatal	

5.3 Structure of stomata

- 5.4 Mechanism of opening and closing of stomata –Steward's hypothesis, active K⁺ transport mechanism
 5.5 Factors affecting the rate of transpiration
- 5.6 Significance of transpiration
- 5.7 Antitranspirants
- 5.8 Guttation
- 5.9 Exudation

6. Plant growth and plant growth regulators

- 6.1 Introduction
- 6.2 Phases of growth

6.3 Measurement of growth- Arc auxanometer, Bose crescograph, fresh and dry weight method

- 6.4 Factors affecting growth
- 6.5 Plant Growth Regulators- Introduction and definition
- 6.6 Properties and practical applications of auxins, cytokinins, gibberellins, ethylene and abscisic acid

7. Nitrogen metabolism

- 7.1 Introduction
- 7.2 Biological nitrogen fixation
 - 7.2.1 Symbiotic nitrogen fixation, nitrogenase enzyme- structure and function
 - 7.2.2 Non-symbiotic nitrogen fixation
- 7.3 Denitrification, ammonification and nitrification
- 7.4 Reductive amination and transamination
- 7.5 Role of nitrogen in plants

8. Seed dormancy and germination

- 8.1 Definition and types of seed dormancy
- 8.2 Methods to break seed dormancy
- 8.3 Metabolic changes during seed germination

9. Physiology of flowering

- 9.1 Photoperiodism Concept, definition, short day plants, long day plants and day neutral plants, photoperiodic induction, phytochrome and flowering
- 9.2 Phytohormones and initiation of flowering
- 9.3 Applications of photoperiodism

6L

8L

4L

7L

9.4 Vernalisation – concept and definition, mechanism of vernalisation, applications of vernalisation, devernalization

References:

- 1. Bidwell, R.G.S. 1974. Plant Physiology. Macmillan Pub. Co., N.Y.
- 2. Devlin, R.M. And F.H. Witham. 1983. Plant Physiology. Willard Grant Press. U.S.A.
- 3. Hans-Walter Heldt. 1997. Plant Biochemistry And Molecular Biology. Oxford University Press, New York. Usa.
- 4. Moore, T.C. 1979. Biochemistry And Physiology Of Plant Hormones. Springer-Verlag. Berlin.
- 5. Raman, K. 1997. Transport Phenomena In Plants. Narosa Publishing House. New Delhi.
- 6. Jain, V.K. (2000): Fundamentals Of Plant Physiology, S.Chand&Co, New Delhi.
- 7. Pandey, S.N. (1991): Plant Physiology, Vikas Publishing House (P) Ltd., New Delhi, India.
- 8. Verma, V. (2007): Text Book Of Plant Physiology, Ane Books India, New Delhi.
- 9. Nobel, P.S. 2009. Physicochemical and Environmental Plant Physiology.4th edition Academic Press, UK
- 10. Taiz, L. and Zeiger, E. 2006. Plant Physiology. 4th Edition. Sinnauers Associates, Saunders land, Massachusetts, USA
- 11. Salisbury F.B. and Ross C.B. 2005. Plant Physiology. 5th Edition. Wadsworth Publishing Co. Belmont CA.
- 12. Helgi OPik, Stephen A. Rolfe, Arthur J. Willis. 2005. The Physiology of Flowering Plants, Cambridge University Press, UK
- 13. Kirkham, M.B. 2004. Principles of Soil and Plant Water Relations. Elsevier, Amsterdam, Netherlands.
- 14. Dennis, D.T., Turpin, D.H., Lefebvre, D.D. and Layzell, D.B. 1997. Plant Metabolism. 2nd Edition. Longman Group, U.K.
- 15. Fitter, A. and Hay, R.K.M. 2001. Environmental Physiology of Plants. Academic Press, UK.
- 16. Press, M.C., Barker, M.G., and Scholes, J.D. 2000. Physiological Plant Ecology, British Ecological Society Symposium, Volume 39, Blackwell Science, UK.

S. Y. B. Sc. [Botany] (Semester II, Paper I) Plant Anatomy and Embryology (48 Lectures)

P	ant anatomy:	
1.	Introduction	2L
	Definition, scope of plant anatomy and types of tissues	
2.	Epidermal tissue system	4 L
	Structure and function of epidermal tissue system, uniseriate and multiseriate epidermis,	
	stomata: structure, types and functions, epidermal outgrowth: glandular and non-glandular	
3.	Mechanical tissue system	4 L
	Principles involved in distribution of mechanical tissues - inflexibility, incompressibility,	
	inextensibility and shearing stress, tissues providing mechanical support, their distribution i	n
	leaf, stem and root of dicots and monocots.	
4.	Vascular tissue system	4 L
	Structure and function of xylem, phloem and cambium	
5.	Normal secondary growth	5L
	Introduction, cambium and its role, process in stems of Helianthus annus and An	nona
	sqamosa, extrastelar and intrastelar secondary growth, annual rings, periderm, bark, tylosia	s and
	lenticel	
6.	Anomalous secondary growth 5L	
	Introduction, causes, anomalous secondary growth in dicot stem (Bignonia) dicot	root
	(Raphanus) and monocot stem (Dracaena).	
Pl	ant Embryology	
7.	Introduction	1L
	Definition and scope of plant embryology	
8.	Microsporangium and male gametophyte	5L

- a. Microsporangium: structure of tetrasporangiate anther, types of tapetum, sporogenous tissue.
- b. Microsporogenesis: process and its types, types of microspore tetrad.
- c. Male gametophyte: structure and development of male gametophyte.

10. Megasporangium and female gametophyte:

- a. Megasporangium: structure, types of ovules anatropous, orthotropous, amphitropous, campylotropous, circinotropous.
- b. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads.
- c. Female gametophyte: structure of typical embryo sac, types of embryo sacs with examples monosporic, bisporic and tetrasporic.

11. Fertilization:

Mechanism of pollination- entomophily, anemophily, hydrophily, zoophily, germination of pollen grain, double fertilization (syngamy and triple fusion) and its significance.

12. Endosperm and embryo

- a. Endosperm: Types nuclear, helobial and cellular.
- b. Embryogeny: structure of dicot and monocot embryo and seed formation.

References

- Plant Anatomy, Chandurkar P J, Plant Anatomy Oxford and IBH publication Co. New Delhi 1971
- 2. B P Pandey, Plant Anatomy, S Chand and Co. Ltd, New Delhi 1978
- 3. Greulach V A and Adams J E Plant- An introduction to Modern Biology, Toppen Co. Ltd, Tokyo,
- 4. Eams and Mc Daniel, An Introduction to Plant Anatomy, McGraw –Hill Book Co. Ltd and Kogakusha Co, Tokyo, Japan
- 5. Adriance S Foster Practical Plant Anatomy, D Van Nostrand Co. INC, Newyork
- 6. Esau, Plant Anatomy, Wiley Toppan Co. California, USA
- 7. Pijush Roy, Plant Anatomy, New Central Book Agency Ltd, Kolkata
- 8. Pandey S N and Ajanta Chadha, Plant Anatomy and Embryology, Vikas Publishing House, Pvt, Ltd, New Delhi
- 9. Bhojwani S S and Bhatnagar S P, An Embryology of Angiosperms
- 10. Maheshwari P, An introduction to Embryology of Angiosperm
- **11.** Nair P K K Essentials of Palynology.

6L

5L

S. Y. B. Sc. [Botany] (Semester II, Paper II) Plant Biotechnology (48 Lectures)

1. Introduction 2	2L
1.1 Biotechnology- Definition, concept and scope	
1.2 Interdisciplinary nature of biotechnology	
2 . Enzyme Technology 7	′L
2.1 Introduction, definition and properties of enzymes.	
2.2 Classification of enzymes	
2.3 Industrial applications of enzymes.	
2.4 Production of amylase, proteases and lipase enzyme	
2.5 Enzymes immobilization - concept and techniques of immobilization	
3. Fermentation Technology. 7	′L
3.1 Introduction.	
3.2 Liquid and solid state fermentations	
3.3 Principles of microbial growth	
3.4 Bioreactors used in fermentations- stirred tank and tubular tower and digestive tank	
fermenters	
3.5 Media composition for liquid and solid state fermentations	
3.6 Industrial applications of fermentation	
3.7 Downstream processing- citric acid production.	
4. Single cell protein5	5L
4.1 Introduction	
4.2 Need of proteins in diet	
4.4 Production of SCP from algae (Spirulina) and fungi (Yeast)	
4.5 The economic implications of SCP	
4.6 Acceptability of SCP	
5. Environmental Biotechnology 6	ίL
5.1 Introduction	
5.2 Phytoremediation- definition and concept	
5.3 Methods of phytoremediation- Rhizofilteration, phytoextraction, phytostabilization	on,
phytovolatization, phytodegradation,	
5.4 Environmental sustainability	

6. Basics of plant genetic engineering

- 6.1 Introduction and structure of DNA
- 6.2 Structure of gene in prokaryots and eukaryots- Promoter, coding region and terminator
- 6.3 General method of gene isolation from the plants-DNA isolation, restriction enzymes, restriction digestion of DNA, DNA electrophoresis, southern hybridization, lygation of DNA fragments
- 6.4 Gene cloning- vectors used for gene cloning

7. Methods of gene transfer in plants

- 7.1 Direct gene transfer methods- Electroporation, biolystic gene transfer, liposome mediated transfer.
- 7.2 Vector mediated gene transfer- *Agrobacterium* mediated gene transfer in plants, Ti-plasmid: structure and functions, Ti plasmid based vectors, advantages.
- 8. Application of plant genetic engineering in crop improvement.
 - 8.1 Introduction
 - 8.2 Insect pest resistance, abiotic stress tolerance, herbicide resistance, storage protein quality

9. Nano-biotechnology

4L

7L

8L

9.1 Definition and concept

9.2 Applications of nanotechnology in agriculture (fertilizers and pesticides).

REFERENCES:

- Nanobiotechnology, Concepts, Applications and perspectives, C.M. Niemeyer and C.A. Mirkin ; 2004; WILEY-VCH,.
- 2. Bionanotechnology: concepts, Lessons from Nature", David.S. Goodsell, 2004 Wiley-Liss
- 3. Nanobiotechnology Protocols; Sandra J Rosenthal, David W Wright 2005, Humana Press Inc
- 4. Nanoscale Technology in Biological Systems; R.S. Greco, F.B.Prinz and R.L.Smith 2005 CRC press,.
- 5. Fundamental Molecular Biology; Allison LA; 2007
- 6. Recombinant DNA, Watson et al ; 5th Ed; 2006
- 7. Techniques for Engineering Genes; Curell BR et al;2004
- 8. Techniques for Molecular Biology; Tagu D & Moussard C; INRA; 2006
- 9. Gene Cloning and DNA Analysis ; 5th Ed ; Brown TA ; 2006
- 10. Analysis of Genes and Genomes ; Reece RJ ; Wiley; 2004
- 11. Recombinant DNA and Biotechnology ; 2nd Ed ; Kreuzer H and Massey A ;ASM;2006
- 12. Text book of biotechnology, R.C.Dubey, 2009, S.Chand, Delhi

S. Y. B. Sc. [Botany] Paper III

Practicals Based on Theory Paper I and II

a) Taxonomy of Angiosperms and Plant Community	
1. Description of flowering plant in botanical terms	(01 P)
2. Study of plant families (any four)	(03 P)
3. Study of ecological adaptations in Hydrophytes with any two examples	(01P)
4. Study of ecological adaptations in Xerophytes with any two examples	(01P)
5. Study of vegetation by list count quadrat method.	(01P)
6. Study of tools of taxonomy and ecological instruments (any four each)	(01P)
b) Plant Physiology	
1. Determine water holding capacity (WHC) and pH of soil (pH by pH meter.)	(01 P)
2. Study of plasmolysis in suitable plant material	(01 P)
3. Determination of Diffusion Pressure Deficit (DPD).	(01 P)
4. Determine rate of transpiration under different conditions of	(01 P)
Sunlight, Shade and wind	
5. Demonstration Experiments. (Compulsory Practical)	(01 P)
a. Curling Experiment	
b. Imbibition in seeds	
c. Arc Auxanometer	
d. Effect of auxins on rooting	
e. Transpiration pull	
f. Spectrophotometer	
g. Portable leaf area meter	
h. Conductivity meter	
i. Centrifuge	
6. Assessing seed viability by TTC method	(01 P)
c) Plant Anatomy and Embryology	
1. Study of epidermal tissue system – non-glandular and glandular trichomes, mu	ltilayered
epidermis, typical stomata (dicot and monocot).	(01 P)
2. Study of mechanical tissues and their distribution in root, stem and leaves.	(01 P)
3. Study of normal secondary growth in dicot stem – Annona /Moringa.	(01 P)

(Double stained temporary preparation).

4. Study of anomalous secondary growth in Bignonia and Dracaena stem.	(01 P)
(Double stained temporary preparation).	
5. Study of tetrasporangiate anther and types of ovules.	(01 P)
6. Study of dicot and monocot embryo.	(01 P)
b) Plant Biotechnology	
1. Production of citric acid by Aspergillus niger and estimation of citric acid by titration	
method.	(02 P)
2. Production of single cell protein production i.e. Spirulina / yeast and study of comme	ercial
products	(01 P)
3. Demonstration of fermentation and fermentation products	(01 P)
4. Demonstration of separation of plasmid DNA by agarose gel electrophoresis	(01 P)
5. Demonstration of enzyme immobilization	(01 P)

N.B. Botanical excursion tour and submission of at least five correctly identified wild plant photographs is compulsory.