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WHITEHEAD’S METHOD OF EXTENSIVE ABSTRACTION

In ordinary parlance as well as in mathematics we have both
intervals of space and (magnitudeless) points such that the
extremities of some intervals, viz., the line-segments, are points.
Now, there are three prima facie possibilities with regard to the
question of primacy between intervals and points : (i) that the
points are given and the intervals arise from them in some Wway
(such as by summation or fluxion); (ii) that the intervals are
given and the points arise from them in some way (such as by
division or abstraction); and (iii) that both intervals and points
are given independently of each other though certain relations
hold between them as of necessity.

Alfred North Whitehead (1861-1947) has been much concer-
ned with this question, but he has not actually stated in so
many words as to why he had adopted one of these views and
rejected the others. However, from the ‘hints he drops here and
there, we may say that his reasons must have been somewhat as
follows.

A little consideration suffices to show that the third view does
not really present a viable alternative. If a given relation holds
between two terms as a matter of empirical fact, then it may be
that the two terms are given independently of one another and
of the relation that subsists between them. But if a relation is
supposed to hold between two terms as of necessity and the
relata are supposed to be indefinables or to be definable indepen-
dently of each other and of the relation that subsists between
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them as of necessity, then such a relationship can be asserted
only in the form of a synthetic a priori proposition and only on
the basis of intellectual intuition. Intuitionism has been a power-
ful movement in philosophy and mathematics, but, it seems that
Kant was the last among notable philosophers to subscribe to
such a view. The “synthetic a priori proposition’’ can now
hardly be regarded as a proposition, and “ intellectual intuition ”
can hardly be regarded as a source of knowledge. In any case,
the third view not only evokes Ockham's Razor (if one of the
other two views be substantiable) but actually involves a circu-
larity as any attempt at directional apalysis of the deductive
system we call geometry will show. The second seems to have
been the most widespread view among the Greeks, some taking
an interval as constituted of a finitude of “extended” points,
some regarding it as constituted of an infinitude of magnitude-
less elements, and some as arising from the fluxion or motion
of a point. The discovery of the incommensurability of the
diagonal of a square with its side nipped the possibility of exten-
ded clements in its bud. The view that an interval consists of an
infinitude of elements gave rise to a dilemma : if the elements
have magnitude, no matter how small, then the interval must be
infinite in magnitude; if the elements have no magnitude, then
the interval has no wagnitude either. The first horn of the
dilemma, if all the elements have the same magnitude, has never
been controverted. The second horn also remained unanswered
untit the 19th century when mathematicians developed the theory
of transfinite numbers and it became possible to see how magni-
tudeless elements could give rise to an interval of positive magni-
tude. However, one should not accept as a datum something
which was not among the primary data of sense perception.
Four-dimensional spatio-temporal events are the ingredients of
which the universe consists and which are our primary percep-
tual data. Hence, one had to arrive at the point from the four—
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dimensional continuum of sense perception by some rational
process of abstraction. The view that an interval arose by fluxion
has the same drawback of taking something as a datum which
is not among the primary data of sense perception. The possibi-
lity that the interval was given and the point arose from it by
continued division had long ago been disproved by Zeno. If you
divide a line-segment into two halves and then each of the
halves in their turn into two halves and so on, then you never
can arrive at the point. That the point arises from the interval
by abstraction must be the true view, but while the Greek genius
had intuitively jumped at the notion of a point, no one had ever
actually abstracted the point from the interval—it had simply
been assumed that the process of simplification led to the point.

It seems to me that in view of some such considerations,
Whitehead put himself to the task of abstracting the point from
the four dimensional spatio—temporal event or region with the
help of a few indefinable notions embeded in sense perception
and a number of reasonable axioms, and thus of endeavouring
to establish geometry on a more secure epistemological founda-
tion than had Euclid or even modern mathematicians.

I
Whitehead has presented his method of extensi\c;e abstraction
in four of his works :'

1. “La théorie relationiste de I' Espace”, Revue de meta-
physique et de morale, XXIII (1916), pp. 423-34,

2. An Enquiry Concerning the Principles of Natural Know-
ledge, Cambridge, 1919, Part 3.

3 The Concept of Nature, Cambridge, 1920, Chapter 4.

4. Process and Reality, New York, 1929, Part 4.

The method presented in all these works is essentially the
same although there are some differences among them in
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matters of detail. It would in itself be of interest to study these
difTerences and to trace the evolution of Whitchead’s thought on
and technique for extensive abstraction from his Organisation
of Thought published in 1917 to the Process and Reality publi-
shed in 1929. Some scholars have discussed some of these
differences, but, I am not aware of any detailed study of those
differences. However, in this article we propose to study the
essential elements of Whitehead's method, since our main pur-
pose here is to evaluate it, and shall therefore confine ourselves
to only one of the four works. Process and Reality, which is his
magmum opus and contains his most mature attempt at extensive
abstraction. '

Whitehead takes region and extensive connection as indefinable
terms and explains his usage concerning these two terms from
which we learn that the former is at least a four—dimensional
continuum and the latter means any kind of relation that any
two regions can have io one another. He first defines the con-
cepts of inclusion or whole-part relationship, overlapping,
dissection of a region (i.e, a set of mutually exclusive and
collectively exhaustive parts), intersect of two regions (i.e, a
region in which two regions overlap), unique and multiple
intersection of two regions (if there are two or more non-con-
tiguous intersects of two regions then two regions have multiple
intersection and if they have only one intersect then there is
unique intersection), externally connected (i.e., contiguous),
tangentially included (i.e., so contained that part shares in the
“surface” of the whole) and non-tangentially included (i.e., so
contained in the interior that the part in question is completely
surrounded by another part of the given region), and then
introduces the notion of an abstractive set as a set of regions
any two of which are such that one of them includes the other
non-tangentially and none¢ of which is included in every other
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member of the set. Thus, he presents the notion of convergence
to a geometrical entity, p(}iht, line, surface and solid, wirhout
postulating any of these entities. That is, we begin with a region
R of any size and then take as a membuer a region M which is
non-tangentially included in the given region, i.e, a part of
region R which is surrounded on all sides by another part of R
having some thickness so that the upper surface of M is not
connected with any region not included in R. By taking smaller
and smaller such parts of R as the members of our set we obtain
a set of regions none of which is the smallest member and the
regions converge to a solid, surface, line and point. {Even in the
case of converging to a region, that is, to. a four-dimensional
continuum, it is clear that such a region is not a member of the
set but lies beyond ‘all’ the members of the set, just like the
omega—plus-oneth tmember of an infinite convergent scries, the
members of the set approaching it more and more closely as we
move down the converging end of R.)

Whitehead introduces the notion of one abstractive set covering
another abstractive set (i.., that of every member of one sct
non—tangentially including some member of the other) and that
of *equivalence’ of abstractive scts, or in ordinary parlance, the
notion of sameness of convergence. A geometrical clement is
now defined as a complete group of equivalent abstractive scts,
equivalent to one another and to no other abstractive set outside
the group. Then the notion of one geometrical clement being
incident in anotler geometrical element is introduced : when
every member (abstractive set) of a geometrical element a
covers every member of another geometrical element b, but a
and b are not identical then b is said to be incident in a (ic., to
be contained in a). And now we reach the ‘point’ as a geometri-
cal element in which no other geometrical element is incident.
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Whitehead points out that this definition is to be compared
with the Euclidean definition of a point as that which has no
part.

We may now introduce the notion of being prime in reference
to assigned conditions by which Whitehead means that no other
geometrical element satisfying those conditions is incident in the
given geometrical element. Whitehead points out that a point is
an absolute prime in the sense that no other point or geometri-
cal element can be incident in it. He is now in a position to
define a segment as a geometrical element between points p and
q in which p and q are incident and in which no geometrical
element is incident in which also p and q are incident; p and q
in such cases are to be called the end—-points of the segment.

Whitehead now introduces the notions of a point being situa-
ted in a region and in the surface of a region : a point is situated
in any region which is a member of one of the abstractive sets
composing that point, and a point is situated in the surface
of a region x when all the regions in which that point is situated
overlap with x but are not included in x.

A complete locus of points can now be defined : A complete
locus of points is a set of points that compose all the points
situated in a region, or in the surface of a region, or all the
points incident in a geometrical element, The volume of a region
is a complete locus consisting of all points situated in that
region; a surface of a region is a complete locus consisting of
all the points situated in the surface of that region; and, a linear
stretch between two end-points is a complete locus consisting of
all the points incident in the segment between those two points.

W hitehead makes an important remark about the Euclidean
definition of a straight line. He says that the weakness of thig
definition is that nothing has been deduced from it whereas the
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uniqueness of a straight segment between two points (i.e, there
peing one and only one straight segment between any (Wo
points) should be deducible from it. Consequently, in modern
times, as Whitchead points out, a straight line segment has been
defined as the shortest distance between two points, and shortest
distance has itself been practically defined as the line which is
the route of certain physical occurrences. Whitehead tries to
remedy this gap in the classical theory.

Whitehead mentions a class of oval regions and says that it is
to be defined. The only weapon that he finds for this definition
is the notion of regions which overlap with a unique intersect.
He says that evidently it is a property of a pair of ovals that
they can only overlap with unique intresection, but, he says, it is
equally evident that some non-oval regions also overlap with
unique intresection. However, he says, the class of ovals has the
property that any non-oval region overlaps some oval regions
with multiple intersection. He admits that a single oval region
cannot be defined but a class of oval regions can be defined inas-
much as a class can be defined whose members have to each
other and to non—oval regions the properties ascribed by him to
the class of oval regions. Such a class, he says, will be called
ovate.

Whitehead proposes a preliminary definition; An ovate abstrac-
tive set is an abstractive set whose members all belong to the
complete ovate class under consideration, He then defines an
ovate class of regions as those which fulfil a certain group of
non—abstractive and a certain  group of abstractive conditions.
The non—abstractive conditions are : (i) any two overlapping
ovate regions have a unique intersect which also is an ovate
region; (ii) non—ovate region overlaps some ovate regions with
multiple intersection; (iii) any ovate region overlaps some non-
ovate regions with multiple intersection; (iv) the surface of any
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two externally connected ovate regions touch either in a comp-
lete locus of points or in a single point; (v) the surface of a
non-ovate region touches the surface of some ovate region
externally connected with it in a set- of points which does not
form a complete locus (i.e., the two regions touch in a set of
points which does not comprise a line segment, surface or
volume); (vi) the surface of an ovate region touches the sur-
face of some non-ovate region externally connected with it in a
set of points which does not form a complete locus; (vii) any
finite nnmber of regions are included in some ovate region (i.e.,
there is a sufficiently large ovate region to contain any given
finite number of regions); (viii) if A and B be any two ovate
regions such that A includes B then there is an ovate region C
such that A includes C and C includes B, and (ix) there are
dissections of every ovate region which consist wholly of ovate
rcgions, and, there are dissections which consist wholly or partly
of non—ovate.regions. The abstractive group of conditions are :
(i) there are ovate abstractive sets among the members of any
point; (ii) if any set of two, or of three, or of four, points be
considered, there are ovate abstractive sets prirﬁc in reference to
the condition of covering those points; and, there are sets of
five points such that no ovate abstractive set is prime in refe-
rence to the condition of covering those points. Whitehead
points out that by reason of the definitions of the abstractive
group of conditions, the extensive contmuum in question is four—
dimensional. An extensive continuum of any number of dimen-
sions can be defined analogously. Whitehead asks us to notice
that the property ‘of being dimiensional is relative to a particular
ovate class in the extensive continuum (emphasis ours) : there
may be ovate classes satisfying all the - conditions except the
dimensional conditions. He further informs that a continuum
may have one number of dimensions relatively to one ovate class
and another number of dimensions relatively to another ovate
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class, Whitehead opines that the physical laws which presuppose
continuity, possibly depend on the interwoven properties of two
or more distinct ovate classes. (emphasis ours).

Whitehead assumes that there is at lcast one ovate class in
the extensive continuum of the present epoch which has the two
groups of characteristics enumerated above. He selects one such
ovate class and says that all [ further ] definitions will be made
relatively to the selected ovate class, He assures us that there
being an alternative ovate class is immaterial to the argument;
if’ there be such an other one, the derivative entities defined in
reference to this alternative class are entirely different to those
defined in reference to the selected class. He now presents the
theorem which is going to help prove the uniqueness of a straight
segment : if two abstractive sets are prime in reference to the
same two-fold condition of covering a given group of points
and of being equivalent to some ovate abstractive set, then the
two abstractive sets are equivalent. He offers an elegant proof.?
It follows as a corollary that all abstractive sets, prime with
respect to the same two—fold condition of this type, belong to
one geometrical element.

We now come to the definition of a straight segment. If two
abstractive sets arc prime in reference to the same two—fold
condition of covering a given set of two points and of being
equivalent to some ovate abstractive set, then two sets are equi-
valent and belong to one geometrical clement : this geometrical
element is called a straight segment. As can be readily seen,
this definition itself shows the uniqueness of a straight segment.
A similar definition is given of a flat geometrical element : ins-
tead of having two, we now have more than two, points, White-
head observes that straight segments are also included under the
designation of flat geometrical elements.
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Realizing that it may so happen that the same geometrical
element is difinable by some sub—set as is defined by a given set
of points, Whitehead offers a definition and a postulate to meet
this difficulty. A set of points which defines a flat gecometrical
element is said to be in its lowest terms when it contains no
sub-set defining the same flat geometrical element; and, no two
sets of a finite number or points, both in their lowest terms,
define the same geometrical element.

Whitehead defines a straight line between two given points as
the locus of points incident in a straight segment between those
points. (A straight segment between two given points was
defined as a certain geometrical element. Now, a straight line
between two points is being defined as a certain locus of points. )
Similarly a flat locus is defined as the locus of points in a [flat
geometrical element. He relates a given flat locus with a section
thereof through the assumption that if any sub-set of points
lies in a flat locus, that sub—set too defines a flat locus contai-
ned within the given locus. Now a complete straight line is
defined as a locus of points such that (i) the straight line join-
ing any two members of the locus lies wholly within the locus,
(ii) every sub=set in the locus, which is in its lowest terms,
consists of a pair of points, and (iii) no points can be added
to the locus without loss of one, or both, of the characteristics
(i) and (ii).

Whitehead defines a trianglé as the flat locus defined by
three non-collinear points; thése points are the angular points
of the triangle. A plane is defined as a locus of non-collinear
points such that (i) the triangle defined by any three non—col-
Jinear members of the locus lies wholly within the locus, (if)
any finite number of points in the locus lies in some triangle
wholly contained in the locus, and (iii) no sct of points can be
added to the lacus without loss of one, or both, of the charac-
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teristics (i) and (ii). Similarly, a tetrahedron is the flat locus
defined by four non-coplanar points which are the corners of
the tetrahedron. We now come to th the definition of a three
dimensional flat space. It is a locus of non-coplanar points such
that (i) the tetrahedron defined by any four non-coplanar
points of the locus lies wholly within the locus, (ii) any finite
number of points in the locus lies in some tetrahedron wholly
contained in the locus, and (iii) no set of points can be added
to the locus without the loss of one, or both, of the characteristics

(i) and (ii).
1

Does the method succeed in derving the point from the
region ?

Professor Adolf Grynbaum answers this question in the nega-
tive on two grounds. According to Professor Griinbaum, (i) the
convergence of the abstractive sets or classes is fatally ambigu-
ous,” and (ii) Whitehead’s method is vitiated by one of Zeno’s
arguments *

(1) Professor Griinbaum’s first ground is valid in so far as
Whitchead’s earlier works, the Enquiry and the Concept are
concerned. In those works, he had taken the expression ‘A
extends over B’ to mean that B was a proper part of A. Now,
if we take smaller and smaller (proper) parts of A as the
members of an abstractive ‘class’, then, without appealing to
the notions of a point, line, surface or volume, it cannot be
determined as to what kind of an entity it is to which, e.g., to
a point or a line, does a given abstractive - class’ converge, For
example, if we take an event E and wish to take out parts of E
to converge to a line, but take out parts E,, E,, E, ... such that
the ‘surfaces” of E,, E,, E, ... have one and only one point in
common, then the abstractive ‘class’ so abtained connot com.
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verge to a line. Thus, to what an abstractive class converges was
not determinable. Whitehead had done nothing to forestall this
ambiguity of convergence. And this ambiguity was fatal to his
Method, since it entirely depended on the notion of sameness
of convergence. In his Process and Reality, Whitehead removed
this ambiguity by distinguishing between tangential and non-
tangential inclusion and basing the notion of an abstractive set
on that of non-tangential inclusion or non~tangential whole-part
relationship. No two members of an abstractive set can mow
have a common outer surface or a common line—segment or
point on their outer surfaces.

However, Professor Grinbaum holds that the Method even
as presented in PR is beset by ambiguity of couvergence. He asks
us to take two distinct but neighbouring points such as x=0
and x=10"199_ It is clear that there is a non-denumerable in-
finity of other points between the two chosen points. Now,
Professor Grijnbaum asks Whitehead to tell us (i) whether we
know from sense perception that there exist two different abstrac.
tive classes defining those two points, and, if the answer be yes,
to tell us (ii) as to precisely how their particular difference is
certifiable by sense perception. Professor Grunbaum, it is sub-
mitted, does not sec that a circularlity is involved in his rhetori-
cal question, and that he is raising an irrelevant issne. He first
asks us to assume that there are two points and then demands
that their difference should be certifiable by sense cxperience.
To be able to demand that the difference between two points
should be demonstrable in sense experience, he would have to
point out two perceptible things which can be represented by
x=0 and x=10"1%%, If he would have succeeded in doing that,
then Whitehed too would have succeeded in pointing to the
perceptible difference between those two things. However, the
point is that empiricism does not demand that everything . we



Whiteliead’s Method of Extensive Abstraction 137

talk about should be perceptible. It would suffice i what we
talk about can be brought into some intelligible relation with
what is observable in sense perception. Hence, it is not required
that we should be able to distinguish between two such points
in sense perception so long as some rational principle can be
laid down for the purpose of distinguishing the one from the
other. If it would have been the case that we are unable to
distinguish between rwo abstractive sets of regions, A and B,
converging respectively to points x==0 and x=10"19%, then
indeed Whitehead’s method would have been fatally ambiguous
and would have been a total failure on that account. But we see
that B would have members (in fact, infinitely many members)
which do not contain point x—0 ( that is, some members of B
would not include any region which is a member of some set
of regions that would ordinarily be said to converge to point
x=0).

However. it seems to me that the convergence of the abstrac-
tive sets /5 ambiguous in one case, namely, in the case of a set
that is supposed to converge to a region but which may only
converge to a surface. That is to say, Whitechead does not pro-
vide a criterion to distinguish between those abstractive sets that
would ordinarily be said to converge to a solid and those that
would ordinarily be said te converge to a surface.

Let there be an abstractive set that would ordinarily be said
to converge to a sphere s. Let point p be the centre of sphere s.
Now take a large sphere R concentric with and containing s.
Spherical parts of R having p as their centre and larger than s
would then constitute an abstractive set converging to s. Let us
call this abstractive set A. Jt is clear that s is not a member of
A if we construct a set having as members R, R,, R;, Ry,.,...
s uch that p is the centre of each of these spheres and R, is con
tained in R, R,in R,, R, in R,, and so on, and such that each
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member is larger than s, then we have an infinite convergent
series whose first member is R and s is in the nature of the
omega—plus—oneth term, i.e., s is the ‘limit’ of this series. We
now take another abstractive set of regions B such that every
member of B contains some member of A and similarly every
member of A contains some member of B. It follows that B
must also converge to s, for, otherwise, some member of A would
fail to contain any member of B or some member of B would
fail to contain any member of A. Enquivalence of two abstrac-
tive sets (in Whitehead’s sense) ensures sameness of convergence.
Now, our objection is that having chosen the abstractive set A
(and, consequently, set B as well as the ‘complete’ group of
abstractive sets equivalent to A and to one another and equiva-
lent to no other abstractive set outside the given group), if we
were to assume that sphere s does not exist—that is, if we assume
that R is a hollow region—then Whitehead's method partially
fails, for, now abstractive set A can only be said to converge to
a surface, the surface of sphere s, but, Whitehead’s method does
not ensure that region R must not be hollow, Whitehead simply
assumes that a region is not hollow. In other words, Whitehead
should have made sure that something hollow cannot be taken
10 be a region but he failed to do so. However, this is not a
crucial failure. The defect can be remedied by defining a gap
and postulating that there are no gaps in any region. For example,
Whitehead could have added two propositions at the end of sec-
tion 1I (p. 420), as follows :

Definition 9 A. A region A is said to have no ‘gap’ in
it when there are two regions B and C
such that A and B are a dissection of
C, and C includes B non-tangentially.

Assumption 18 A. By ‘region’ we shall henceforth mean a
region that has no gap in it. This as-
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sumption is merely a convenient arrange-
ment of nomenclature.

It may moreover be pointed out that this was not a very
important matter for Whitehead. For, his method was to jump
from a ( four-dimensional ) region to a ¢ point’ and build up a
line, surface and solid from ‘points’. A group of abstractive
sets that is a ‘ point’ can be unerringly distinguished from any
other group that is another ‘point’ or is a line, surface or solid,
which is what alone matters.

* (2) According to Professor Griinbaum, Whitehead’s method
is vitiated by Zeno’s methematical paradox of plurality. The
argument, in its details, is somewhat as follows :

Part of the edifice of contemporary mathematics rests on the
cenception that a spatial interval is literally composed of unex-
tended point—elements, But, obviously, no finite set of point-
elements can add up to a positive interval, and as argued by
Zeno (and demonstrated by Professor Grijnbaum), not even a
denumerably infinite set of point—elements can constitute a posi-
tive interval, A positive interval can only be constituted by a
non-denumerable infinite set of point-elements. For Whitehead,
a point is a (complete) group of abstractive sets of regions.
Hence, metrical consistency demands that there should be a non-
denumerable infinity of (groups of) abstractive sets of regions.
Now, Whitehead’s programme of epistemological re-construction
of geometry is that of beginning with something perceptible and
by a process of abstraction arriving at things which are the
termini of sense awareness, Hence, Whitehead’s programme, in
conjunction with the demand of metrical consistency, involves
that there should be a non-denumerable infinity of abstractive
scts and that these sets should be among the termini of sense
awareness. Empiricists deny the existence of something actually
-infinite. Even if it is assumed that the existence of somthing
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actually, but only denumerably, infinite is certifiable by sense
awareness, it is evident that the notion of actually infinite sets
having a cardinality exceeding aleph-null, i.e., the notion of non-
denumerbly infinite sets, would inexorably defy encompassment
by the sensory imagination. Hence, Whitehead’s eimpirical pro-
gramme is seen to be at variance with the demand of metrical
consistency.

Professor Grinbaum expects this argument to demolish both
Whitehead’s method in particular, and the empiricist’s aspiration
to reduce non-empirical notions to empirical ones in general.
Insofar as the latter expectation is concerned, it is quite unjusti-
fied. In the first place, an epistemological reconstruction of
geometry along empiricist lines would begin by removing from
geometry the conception that supports part of the edifice of
contemporary mathematics, viz., that an interval is constituted
of magnitudeless elements. As such, no question of certifying
the existence of a non-denumerable infinity of anything in sense
experience or in anything else at all arises. In that case, the
empiricists have of course to evolve points and instants, mass—
points and particles, from phenomena that are perceptible, and
would have to demonstrate that no illogicality was involved in
such evolution. We believe that the empiricists’ programme can
be executed even though Whitehead may not have succeeded in
evolving points from regions. (The notion of a point, we believe,
is a rational notion. Hence, there must be a non—circular process
through which human intellect arrived at the notion of a point.
We have only to rediscover it consciously.) We are thus only
left with the question of this argument's particular application to
Whitehead.

Now, in relation to Whitehead, let it be noted that the argu-
ment involves both his derivation of the ‘ point’ from the region
and his derivation of the “line’, ‘surface’ and ‘yolume' from
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‘points ., Insofar as his derivation of the point is concerned,
this does not involve non—-denumerable infinity, at least directly.
However, if spatial intervals are constituted as modern mathe-
maticians suppose it to be constituted, then the ¢ complete’ group
of equivalent sets that is a geometrical element must have a non-
demumerable infinity of members. But this should present no
insurmountable difficulties since the abstractive sets would be
overlapping in the sense that the member regions of one set
would overlap with the members of the other sets. An abstrac-
tive set is not itself non-denumerably infinite, and; in fact,
Whitehead asks us to think of them as a series of discrete
members even though every one of them non-tangentially con-
tains ‘all’ members coming after itself.

Insofar as Whitehead’s derivation of the ‘line’ etc., from the
‘points ’ is concerned, it is true that he does not explicitly lay
it down that only a mnon-denumerable infinity of points can
constitute a line—segment, sutface of a region, or a region. But
he does not lay it down either that a positive interval is cons-
tituted only of a deaumerable infinity of * points’. Rather, since
he uses the expression ‘all points’ he may be taken to have
supposed a complete locus of points to be constituted of a non—
denumerable infinity of points. Hence, if it be correct that Prof.
Grynbaum’s view succeeds in meeting Zeno's argument in ques-
tion, then Whitehead too may be taken to have succeeded in
meeting Zeno's argument. As for the claim that the existence of
a non-—denumerable infinity of abstractive sets in sense awarness
is impossible, I think, poses no problem for Whitehead, for, in
sense awarness only finite number of regions would suffice to
give rise to the supposition of non—denumerable infinity of
abstractive sets. Moreover, as Professor Mays points out, it is by
no means clear that Whitehead intended epistemological recon-

sisid
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struction of geometry along empiricist lines, and, as Nicod
suggests, the Method may be considered after the fashion of an
abstract mathematical model. * Had Whitehead hud any such
reconstruction at heart, he could hardly have tried to define
lines, surfaces and volumes in terms of points, However, it is
clear that he did not like to take the point as (intuitively) given
and that he endeavoured to bring it into a rationa] relation with
something sensible. Even so, this does not commit Whitehead
to having a non-denumerable infinity of abstractive sets in
perception,

In any popular exposition of Whitehead’s method, it is inevi-
table that the words “point™, “line”, and “surface” should
occur before his definitions thereof occur, just as we had to do
carlier. { Whitehead himself found it necessary, in an aside  to
talk of convergence to a point before he had defined the point.®)
This leads to the objection that a circularity is involved in the
method. But, the fact is that the apparent circularity is involved
only in the exposition of the method, not in the method itseif.
The definition of a point given by Whitchead does not presup-
pose the notion of a point : a point is a geometrical element in
which no other geometrical element is incident, or, in other
words, @ complete group of equivalent abstractive sets in which
no other complete group of equivalent abstractive sets is incident,
And, as argued by Broad and Stebbing, there is no circularity
in popular expositions either, since ‘convergence to a point’ is
itself understood in terms of regions and their relations.© (1 am
not happy with the actual defence though. But, we shall not
argue this point since it relates only to popular expositions and
not to Whitehead's method itself )

1
(i)

We submit however that Whitehead's method does not really
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succeed in deriving the peint from the region for the fcllowing

reasons,

(1) Whitchead either unwarrantably presumes that an abs-
tractive sct does converge to a point. line, surface or region or
abstractive sets fail to converge to a point, line etc.

We see that a given abstractive set A { consisting of concentric
spheres having point p as their common centre) converges 1o p,
but only because we know (or suppose that we know) that
there are points and that points are contuined in regions and
that any given member region of A contains p. If we assume,
for example, that there are no points, then set A will still con-
verge as it did before, but now it will not converge 1o point p.
Whitehead's postulates and definitions do not ensure ihat there
must be points {in the ordinary sease of the word), it is simply
assumed by us all that there are points, lines and other geometrical
entities In other words, Whitehead had end=uvoured to derive
point p, not circularly from uan abstractive sel converging to
point p, but quite logically from the sameness of convergence
of two converging scts of regions; but, in doing so, he fuiled to
ensure that either of the two converging sets should converge
to point p, that is, he failed to ensure that there was something
to which either of the two sets converged. The circularity reap-
pears in that Whitehead simply takes it for granted that region
R (a member of set A) cannot luck point p which will ordinarily
be said to constitute its centre. He made no effort to cnsure,
without appealing to the notion of a point, thut a point be con-
tained in a region; he merely surrounded the intuitively appre-
hended point on all sides and assumed that the poor point
could not run away from the surrounding region without seeing
to it that his postulates and definitions which help surround
the intuitively appreheaded point ensure that it does not
disappear.
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This, however, is not a very cffective argument. Whitchead
could have said that he did nef postulate the entitics ordinarily
called points, lines, etc., and that he had no use for them and
that it sufficed for his purpose that two abstractive sets had
sameness of convergence even though neither converged 7o any-
thing. If Professor Griinbaum were to insist that this would
affect the continuity of the continuum, that if there were no
surfaces, lines and points (as we understand these terms) then
there would only be discrete regions, then Whitehead could say
that he did not have to begin by assuming that spatio—temporal
continua were continuous in the sense of there being boundaries
between regions and that it would suffice for his purpose if
regions were continuous in the sense that regions were contiguous
and had no gaps in them. What is important for Whitehead is
that the point® as defined by him does all the work that a
point is required to do in geometry, However, it seems to me
that {apart from the question whether Whitehead’s point can
do for our point) the fact that two abstractive sets have same-
ness of convergence but neither can be said to converge to any-
thing (without already assuming that there are points, lines and
surfaces and thus begging the question) presents at least an
infelicity.  {And this infelicity turns into perplexity when in
popular expositions ‘ convergence to a point’ etc., is glibly men-
tioned : convergence to a point or convergence’ to a complete
group of equivalent abstractive sets in which no such other
group is incident, and if the latter then what does ‘convergence
to o certain group of abstractive sets’ mean ?)

Whitchead also appeals to the fuct that abstractive sets have
different kinds of convergence : some converge to a region, some
to a surface, some to a line, and only some to a point. But dif-
ferences in the nature of convergence can be apprehended only
when a point, line and surface has already been defined. If we
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do not know what a point, line or surfuce is, and we arc not
supposed to know it till points, lines and surfaces have been
defined, then we only see that, as we proceed toward the regions
included in the earlier regions, the members of the abstractive
set are becoming smaller, we have no means of discovering that
some abstractive sets are converging to a region while others
are converging to a surface, line or point. Thus, in appealing to
the fact that abstractive sets have different kinds of convergence,
Whitehead’s method involves a circularity.

(2) Whitehead's definition of a point as a complete group of
equivalent abstractive sets is necessary but impossible,

The qualification of completeness is necessary because other-
wise it would have been possible that a given group of equivalent
abstractive sets is point p and another group of equivalent
abstractive sets is point g but the members of p and q are equi-
valent und, hence, either a distinction would have to be drawn
between the two groups, which seems impossible, or & rule
would have to be Jaid down that p and q are the same, which in
effect would amount to the completeness of the group.

The qualification of completeness is impossible because no
group of equivalent abstractive sets can be complete. It is evident
that no finite collection of equivalent abstractive sets cun be
complete, since no matter how many such sets have been taken,
there will still be some other set which is equivalent to euch
member of the collection but is not itself a member of this
collection. The reason is that space is ex hypothesi infinitely
divisible and hence given any two equivalent abstractive sets
there is a third which is equivalent to both and in a sense lics
between them. (Suppose we take set S,=R, R,, R,..., Ry ...,
and set $,=E,, E,, Ey,...En ..., such that R, contains E, and
E, contains R,, and so on, Then there is an ubstractive set
S,=F,, F;, Fy,...such that R, contains F,. F, contains E, and
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E, contoins R,, and so on.) This means that given any abstrac-
tive set S, there are infinitely many abstractive scts that are
equivalent to S But there can be no infinite group or collection
of unything, i.e., no determinate collection or group of anything
can be infinite. (This point will be elaborated later in connec-
tion with the question whether *an infinite set of peints® has any

meuning; please see sub-section ii.)

(3) Whitchead’s *point * does not answer to what we call a

point.

We mayv not be able to state what we mean by the word
“point " beyond whit has been suid by Euclid, but, 1 believe, we
ail mean the same thing (otherwise there wonld have been no
geometry ), and certainly what we mean by this word is not a
complete group of equivalent abstractive sets of regions in which
no other such group is incident (and whose member sets would
ordinarily be said to converge to a pomt), C.D. Broad says
that we must not be aghust at finding thet the point had turned
out to be different from what we had expected it to be ¥ Indeed,
if we had supposed a bull to be mnde of iron and on analysis
found out that it was made of silver, or we supposed the ball to
be spherical and found out that it was oblong then we ought
nof to be aghast at our finding. But, here we do mnot begin by
assuning that the point is given and on analysis (s discovered
1o be diflerent from what we had expected it to be. Here, we
believe we know what a point is and if we find that we are being
presented with sopicthing different then we can at least say,
« Well, your ‘point’ is dilferent from ours ™. The crucial test
here, as Broad rightly observes, is to sec if Whitchead’s ‘point’
can do for our point, and, we see that we cannot replace the
di finiendum (the ordinary word ‘““point™) in geometrical sen-
{cnices by the definiens of Whitehead's definition of a point (‘a
ceometrical element in which no other element is incidcnt'}.
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This point may be scen in connection with Whitehead's defini-
tion of being situated in a region. 1t is for us a truism that a
point is situated in o region. But we do not comprehend what
is meant when we are told that a certuin group of equivalent
abstractive sets of regions is said to be ‘situated’ in a region
when that region is a member of onc of the abstractive sels
which compose that group of equivalent abstractive sets. Shorn
of its technicalities, the definition tells us that a group of abstrac-
tive sets of region is sitwated in any region which is a member
of any of the abstractive sets of regions included in the group
in gquestion. We feel that ‘to be situated in a region’ as used
by Whitehead does not mean what we mean when we say that a
point is situated in a region. The gulf between the two usages
appeirs to widen when a complete group of equivalent abstrac-
tive sets ol regions is said by Whitehead to be situated in the
surtace of a region which is a member of one of the given
abstractive sets of regions.

In short, & group of abstractive sets of regions is n0! a point
(as ordinarly conceived) but merely a route or pointer to a
point. It is unquestionably a better route or pointer than any
that we have hitherto had, for example, better than the attempt
to arrive at a point by dividing and subdividing a region. All
the same, a group of abstractive sets is only a  pointer or route
to a pomt, not a point in itself. This, Whitehead had himself
conceded in an earlier work, when he said ;

There is no one event which the series | of events forming
an abstractive class ] marks out, but the series itself is a
route of approximation towards an ideal simplicity of
content, *

A route of approximation towards an ideal simplicity of * content”
it is submitted, is not itself an ideal simplicity of content.
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We may put this argument as follows. If we knew what the
word ‘ point” meant and were looking for point p then Whitc-
head’s method would unerringly take us to point p and to no
other point. That is, if we were in search of a route to p then
nothing 1 know of could provide a better route to p than this
method, for, it is by taking p as the point of departure that the
group of abstractive sets has been arrived at,

However, i we are innocent of the notion of a point then
despite guiding us towards point p by making sure that we do
not chance wander on to any other point or to anything else of
a different nature such as a line, Whitehead’s method completely
fails in yielding a point. What we have is a set of overlapping
regions which become smaller and smaller indefinitely, and
beckon a person wise to the situation towards P and leave an
ignoramus like myself greatly baffled.

To sum it up, if we had to represent a point by something
so that we could retain the distinction between points p, and p,
then groups of equivalent abstractive sets could be used for this
purpose : the distinction would be retained in as much as group
g, cannot lead to p, nor can group g, lead to p, g, being a
route of approximation to p; and g, being a similar route to p,
But if we desired to have something equivalent to what we call
a point, or, what is the same, if we desired to learn what the
word ‘point’ means, then the expression ‘a complete group of
equivalent ubstractive sets of regions in which no other group of
equivalent abstractive scts of regions is incident’ is #0f equivalent
to the word ‘point’, it does not tell us what a point really is, If
so, Whitehead fails to define a point, and, a fortiori, fails to
derive the point from the region.

(4) Whitehead jumps from the (four demensional) region to
the point directly instead of deriving the surfuce from a region, a
line from a surface, and a point from a line.
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If Whitehead would have succeeded in deriving the point from
the region then this objection would have been pointless,
although, even in that case, it would have pointed out an aesthe-
tic infelicity.

If fine, we see that inspite of taking advantage of the infeli-
city of jumping directly from the region to the point and of hav-
ing sameness of convergence without there being a convergence
to, Whitehead fails to find a non—circular method for defining
the point,

(ii)
In addition, it may be pointed out, Whitehead's method [fails
to derive the line from the point.

Insofar as the derivation of the line, surface and volume is
concerned, there is no difference between Whitehead and modern
mathematicians——both derive the line, surface and volume from
the point——and the arguments which can be urged against the
one can be urged against the other.

(1) First of all, it seems strange that a magnitudinous whole
should consist of magnitudeless parts. This difficulty is overcome
by distinguishing between °components’ and * constituents’."’
Even so, it seems strange that a set of things each one of which
is of zero magnitude should give rise to something that bas
positive magnitude.

Strange though it seems, this is what the mathematicians,
Dedekind and Cantor in particular, are supposed to have succe-
eded in doing. If S be a set of points such that for any value of
x, if x is a point on line segment 1 then x is a member of 8 and
if there is no x such that x is a member of S but does not lic in
I, then the members of S ordered in the manner they occur in |
would be equivalent to I. Thus, all we need to do to dissolve
the line-segment into a set of points is to find a sel which has
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the property of set S, Now suppose that the line segment ! is
ol the length ol one centimetre. Let p, be the first point of |,
and p, be the last point of I, Now, any point p, on ] can be
defined in terms of its distance from p.; eg, if p, is aL a
distance of 0.4 centimetres then we represent it by p. 4 How-
ever, this is not sifficient to derive the line. We have to
determine the relations that cubsist between the paints when they
form u line. Dedekind and Cantor, therefore, endeavoured to
determine what characteristics the supposed set of points 8 has,
Now, the first characteristic of points is that no two points are
consecutive. So, no two members of S may be consecutive if set
out in the order of increasing (or decreasing) magnitude of
their subscripts. Secondly, every point is an end-point of some
sub—segment of I, and cvery sub—scgment of 1 is such that an
omega-sequence of points can be obtained having as its ‘limit’
the end—point of that sub-scgment. So, every sub-set of S must
contain a progression of members and the limits of such progres-
sion of must be members of the set S. Thirdly, if p,, and p, be
any two members of 8§ and il m and n be rational numbers, then
there must be a member of S, say p, such that r is an irrational
number greater than m and smaller than n, and conversely, if m
and n are irrational numbers, then there must be a p, such that
r is a rational number greater than m and smaller than n. Given
these conditions, to run through the members of S in the ascend-
ing order of magnitudes would be tantamount to running through

1 from p,to p, "'

Thus, the objection seems to have been overcome : we sec
how a line having a positive magnitude can be dissolved into
points, or if you like, how can magnitudeless points give rise to

a line,

However, it seems to me that the line is not done away with
completely, Of course, the obvious objection that each point was
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defined in terms of its distance from a given point and that no
definition of ‘distance” in terms of points alone had been given,
would be based on a mistake. In order to show that a line can
be analysed in terms of points, the points were initially defined
in terms of distauces, but once we see that an equivalence can
be established between set S und line 1, we can take the points
mdependently of distances and in themselves : if the members
of S have three characteristics given above they give tise to a
centinuum of points. However, no rule appears to have been
given to distinguish between the lengths of two continua of
points. That is, since any continuum of points has a non-de-
aumerable infinity of points, their magnitudes cannot be differen-
tiated by the number of points. Indeed, in some cases, magnitudes
of continna can be diffcrentiated, e. g. where one is a part of the
other, but, even in such cases, the ratios between the two can be
worked out only by toking some continuuimn as the unit of
comparison, which in effect means that some line-segment, in
itself and quite independently of the pointe supposedly constitut-
ing it, would be adopted as the unit of measurement,

(2) Morcover, there is a more fundamental objection to the
mathematicians’ position, viz., that there is no set of terms which
could be the set S, or in other words, that “set S° is not a ‘set
of terms’ but a formula for generating terms, and a formula
which is in principle incapable of yiclding any given set of terms.
We have argued this point elsewhere; '? here we shall content
ourselves with presenting a summary of our arguments,

{1) Since lines and periods of time, on this view, are nothing
but sets or series ol points and moments, whatever be the state
of affairs, the interval must be capable of being given in terms
of points and moments. But we find an insurmountable difficulty
in doing that, Even in telation to points and moments them-
selves we are besct with the difficulty of accounting for the end-
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points (and every point or moment is an end-point). If we
divide a sct (or rather series) into two halves, do we take a
certain point or moment in both the sub-sets or in neither of
the sub—sets or in one but not in the other sub-set ? If we tuke
it (a moment) in both the sub-sets, then we may have to
concede that, e. g., a body is both green and is not green at that
moment. If we take it as being a member of necither sub-set,
then there will be no last moment of being green and no first
moment of being non-green, and, at the moment in question
the body would neither be green nor not be green. If we take
this moment as a member of one of the sub-sets, then, firstly,
cither there will be no last moment of being green or no first
moment of not being green; and secondly, it will become a
matter of arbitrary choice as to which of the two alternatives is
chosen in a given instance.

Perhaps, the only way of meeting this objection is to claim
that we start with wrong data—the body cannot be said to be
green during a sub—period unless we know during what set of
moments it is green; if it is green at moments m, to my then
it is green during period t, such that t, = { m,...my }, but if it
is green at moment m, and every moment before mp but not
at my then we would say that the body 1s green at moments m
such that m, & m << mp (‘<2 meaning ‘is before’ and ‘=’
meaning ‘is the same as or before”’).

But the problem will not get resolved. In the first place, there
will still be cases in which there will be no last moment or no
first moment of being in a given state, for, two ‘consecutive
periods cannot have a common moment and no two moments
are consecutive. Moreover, in the case of motion, if a body
must be motionless at any and every moment (since it cannot
traverse any distance in a moment) then it would seem a little
strange that the body is not invariably at rest during a set of



Whitehead's Method of Extensive Abstraction 153

moments. [n the sccond place, it scems unreasonable to suppose
that a body can be in any state in a durationless moment,

(i} That what we have called ‘set S’ cannot be a collection
of terms is quite clear, since an ‘ infinite collection’ is a contra-
diction in terms.

But 'set S’ cannot be a ¢lass of terms either. It is true that
the word ‘class " is ordinarily used quite ambiguously so that we
have both a defining property and the terms which have that
property. And it is this practice which has given rise to the
problem of universals. We are here using the word differently.
We are so using the word that a given aggregation of terms each
of the same sort or kind constitutes a collection and not a class,
0 that a class can stand in relation only to other classes and
cannot be sazid to have an n number of members no matter what
n may be and no matter how many entities be known to have
the defining property of the given class. Moreover, the property
that defines a class must be general and must not in any manner
be restricted. That is, restriction on a class must come only from
an additional qualification being imposed which must itself be
general. Thus, there can be a class of animals and a class of
points, but there cannot be a class of animals living in Pakistan
or a class of animals existing in the 19th century; similarly
there can be no class of points lying in this solid or that line—
segment, For, ‘living in Pakistan’ or lying in that line-segment’
are not general attributes or properties. If so, there can be no
such class as the class of points between points pm and pp .

Let us suppose that “set’ means something different from a
collection and a class. What will the expression ‘all the members
of 8" now meuan ? If S would have been a collection, it wonld
have meant 'X,, Xz, Xa,....Xn = but S is not a collection. If S
would have been a class it would have meant the whole class to
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the exclusion of on sub-class, but S is not a class. What then
can the expression in question signify ? To me, it signifies noth-
ing except the obstinate desire to do the impossible—to derive
the line from the point.

(iii) Finally, it appears to me that mathematicians took the
wrong course in relating the line and the point : it is the point
which is to be derived from the line und not the line from the
point. Mathematicians thus not only reify the point, they com-
pletely fail to understand the nature of a point. A point is 2
potential division of a line just as a line is a potential division
of a surface, and a surface that of a solid. To talk of all the
points of 1 is thus to talk of all the division of 1, and to equate
a set of points with 1 is to equate a set of divicion of 1 with 1
and to hold that line-segment 1 is nothing but all the divisions
of 1. In a sense, the equation is trae. If there is such a rhing
as ‘all the divisions of 1’ then no matter how disparate the
category of ‘divisions’ and 'line—segments’ may prima facie appear
to be, nothing would be left in 1 if all its possible divisions were
obtaimed. However, ‘all the divisions of 1°, though it very much
looks like ¢ 2ll the boys in this room’ " has at best the same status
as 'all men’ and any attribute predicated of it must bz analytic,
i.e. the predicate must be a componcat of the complex of defining
properties, But when we claim that ‘all the divisions of 1 are
given’ then ‘being given’' does not at all seem to be a property
of “the class of divisions of 1 (even assuming it to be a class).

(iii)
Furthermore, Whitchead fails to define a straight segment. He

defines a straight segment in terms of, inter alia, an ‘ovale’
abstractive set which he has not been able to define,

Whitehead begins by mentioning what he calls an ‘oval’
legion and contrusts it with a non—oval region in a very vague
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and ambiguou fashion. He claims that itis evident that two (as
vet undefined) oval regions can only overlap with unique inter-
section. 1 do not profess to undrstand what he weans. In the
literal sense of the word, a region would be calfed oval if it had
the shape of an cgg and a region which did not have this shape
for example, a sphere, an obelisque or a pyrsmid, would be
called a non-oval region. If so, why two oval and not two non-
oval regions should overlap with unique interscotion is by no
means evident to me. Whitehead further say that anys non oval
region overlaps some oval rcgions with muliiple intersection,
from which it appears as if some oval regions may not overlap
any non—oval region with multiple intersection. Even sa, we
fail to have any definite idea of an oval region or of the distinc-
tion between an oval and a non-oval region.

Whitehead holds that o class of ovals can be defined although
a single oval cannot be defined. It is submitted that this expres-
sion is logically inappropriate. An individual can be described,
possibly, exhaustively described, but cannot be defined. A class
of things can be defined but il a ciass 15 defioed then every
individual which belongs to that class can be distinguished from
any other individual not belonging to that class. The cat called
Pussey cannot be defined. it can only be described; the class of
cats can be defined, which only means that cat-ness or the pro-
perties which a thing must posses in order to qualify to be called
a cat can be exhaustively enumerated. Thus, if it were possible
to define a class of ovals, then it would be possible to say  what
an oval was. But, Whitchead, in saying that a single oval cannot
be defined, meant to say that it was not possible to stute what
characteristics a region must possess to be culled an oval 1f so,
in a logically proper sense, it was not possible to defins the class
of ovals. Thus, we may take it that in claiming that the class
of ovals was definable, what Whitehead really meant to say was
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that without defining the terms ‘oval’ and ‘ non-oval " a set of
protocol propositions could be laid down stating relations between
these terms which could lead us to divine in what senses the two
terms might have been used.

Whitehead further confuses the issue by saying, *...we cannot
define a single oval, but we can define a class of ovals. Such a
class will be called ¢ ovate *',. At first sight, this decision seems
to be senseless : why not persevere with the term ‘oval’, why
bring in yet another undefined term ? But, on reflection, we see
that Whitehead is not using the word “class” to mean things
of the same kind in general, i e, things having common charac-
teristics whether or not there actually be a thing having the
characteristics in question—in short, in a sense in which the
notion of a null class is not a contradiction in terms. Hence, it
would seem that by " ovate "’ he means that group of ovals which
can be defined. This makes sense, but makes the notion of an
oval even more confusing and out of our reach.

Coming to the ovate ‘class’, what Whitehead does is to tell
us what relations two ovate regions must bear to one another,
what relations an ovate region must bear to some non-ovate
region, what relations a non—ovate rtegion must bear to some
ovate region, and that there are ovate abstractive sets. This is
indeed no way of defining what an ovate region is. But let us
try to see what picture of an ovate region emerges from the
protocol propositions.

First of all, an ovate region is not necessarily oval in shape.
For, a sphere satisfies both the abstractive and non-abstractive
conditions laid down by Whitehead. Going over the conditions
of the two groups, we came to the conclusion that what White-

head may have had in mind is what we may call a ‘regular’
region, i.e., a region bounded by a ‘regular’ surface and com-
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prehending all that lies within that surface. In other words, a
region having a surface free from all protuberances and depres-
sions and whose interior is free from all gaps or hollowness. We
argive at this conclusion from the fact that two regular regioms;
neither of the two having any protuberancc or depression, can
overlap only in a single, continuous streteh, whereas a regular
region with some non-regular region and a npon-regular region
with some regular region must overlap with multiple intersec-
tion. And the surfaces of any two regular  regioas must
meet either in a point or in a continuous set of points, that is,
in a line or a surface, whereas a regular surface and some
irregular surface, and, similarly, an irregular surface and some
regular surface, must meet in a non-continuous set of points,
i.e., in a group of points which do not. by themselves from &
line or a surface. .

Although we cannot be definite that this is what Whitechead
must have meant by an ovate region, I feel that we cannot be
far wrong in our belief, for, for purposes of extensive abstraction
the notion of a regular region is indispensable. Hence, we may at
least tentatively assume that by an ovate region Whitehead must
have meant a regular four—dimensional region.

Now, if Whitehead did really mean by an ovate region what
we have designated a regular region, then it is all too clear that,
instead of endeavouring to determine the essential properties of a
regular region and defining a regular region in terms of those
properties, Whitchead only seized upon two characteristics of
pairs of regular/irregular regions/surfaces, namely, those of
unique/multiple intersection und of intersecting in a group of
points forming/not forming a line or surface, and tried to * define ’
the regular region in terms of these two non—essential characteris-
tics of pairs of regular/irregular regions/surfaces, i. ¢, characteris-

.3
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tics which cannot be used to define the term ‘ a regular region ',
for, these properties characterize relations between fwo regions/
surfaces, and, consequently, an ovate, region.

- Thus, even though Whitehead’s definition of a straight segment
is such that the uniqueness of a straight segment is immediately
deducible from the definition itself, which ‘is clearly an improve-
_ment on the traditional treatment, this definition does not succeed
in defining a straight segment since Whitehead had not succeeded
in defining an ovate region- even if hé is regarded as having
succeeded in telling us what he meant by an ‘ovate’ region.
(It is to be noted that although our description of a regular
region as ‘ a region whose surface is free from all protuberances
and depressions and whose interior is free from all gaps or
hollowness * seems quite clear and intelligible, if the notion of
‘a point has not already been defined, means nothing. To become
meaningful, the words * protuberance ', © depression’, ‘gap’ or
‘ hollowness ' will have to be defined without resorting to the
notion of a point. When we try to do so, we find it very difficult
even to distinguish between the surface and the interior of a
region ! )
(iv)

Since, in our opinion, Whitehead has failed to derive the
line-segment from the point and to define a straight segment, it

follows that he has failed to derive the surface and volume from
the point and has failed to define a plane.

v

Now that we come to the conclusion that Whitehead's methed
of extensive abstraction did not succeed in deriving the point,
and the line and the surface, from the region (the latter two
via the point), or in defining a . straight line or a flat surface,
must we regard this method as a historical curiosity, as yet
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another instance of an aberration of the kind human mind affords
" ample evidence of being prone to ? I think that the answer is an
emphatic “ no .
. Solutions of most philosophical problems -have only been
possible by the trial-and~-error method after many false leads
had been thoroughly worked through. When, finally, a definitive
solution is arrived at, all the earlier attempts at solution are seen
to be complements of the actual solution without which such a
solution could hardly- have been possible. Even though a failure
in the ultimate analysis, the very fact that such an attempt was
made is in itself of immense value. In attempting ‘to derive the
- point from-the region, Whitehead's method is on the right track :
we are cerlainly not born with the notion of a point, and, hence,
it is obvious that we acquire it by some such sub-conscious
process as Whitehead’s method. The final solution of this problem
“will be arrived at by the same rigorous logical method of begin-
_ning with a few undefined notions embedded in sense perception
and a few universally acceptable axioms.

It is clear that the notions of tangential and non-tangential
inclusion will prove helpful in any attempt at extensive-abstraction
[f the notions of point, line and surface are not -given, then to
be able to ensure that a given region is a:plenum-i. &; to-ensure
that a given outer surface encloscs the entire region which would
ordinarily be taken as enclosed within it—the notion of non—
tatngential inclusion will be found to be of crucial importance.

The method of rigorous deduction, though not new with
Whitehead, is of the greatest value and the only logical method
for the derivation of the point from the interval. In- relation to
extensive abstraction, Whitehead's was the pioneering endeavour
and will ever be a beacon to all those who might attempt ¢xten-
sive abstraction in the future.
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. Whitehead's procedure in defining a straight segment, that is,
i offering a definition which shows _the straight segment’s
uniqueness among the line-segments bounded by two given
points was a wonderful attempt and one cannot but wish that
‘it had succeeded. Whithead had taken the property of being the
shortest: distance as'the crucial defining property ~without falling
‘d'prey to the circularity involved in other attempts to define the
notion of a ‘straight line. It is clear that if the concept of straiglit-
ness is ever'to be caught hold of in a non-circular deflnition,
‘that definition will have to be such that either the property of
being the shortest distance between two points can be immedi-
ately deduced from the definition or the concept of being the
shortest distance between two points can be defined with thc
help of the defined notion of a straight segment.

~In:short, we owe a debt of gratitude to Whitehead for his
having attempted to derive the point by extensive abstraction
from a datum which was a deliverance of the only primary source
of human knowledge, sense perception.

Af13, Street 4, Block N F. A. SHAMSI
North Nazimabad ’
KARACH! (Pakistan)

NOTES

1, In his preface (written in 1914 } to Qur Knowledge of the External
-+ World (first published in 1914, revised in 1926) Russell. says that he
owed his definition of points and the treatment of instants to Whitehead
and that what he had said on those topics in that book was in fact a
rough prelimirary account of the more precise results which Whitehead
was giving in the fourth vohime of their Principia Mathematica. 1 have
not been able to consult this book. However, it is almost cgrtain, that
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Whitehead’s exposition of his Method in that book must have been
about the same as he has given in the first two works listed here. ( But
at p. 119 of the 1961 reprint of the revised edition, Russell only mentions
the Enguiry and the Concept in this connection. Moreover, Professor
W. Mays, in his book, The Philosoply of Whitehead, 1959, reprint, New
York, 1962, devotes a chapter to the Metliod of Extensive Abstriction,
pp. 115-25, but mukes no mention of the Principie in conuection with
the Method. )

At p. 432, however, hic says that regions M and N intersect instead of
saying thut M and N overlap, { To overlap hias been defined but not *to
intersect *. An ‘intersect * has been defined. but from its definition one
cannot go on to * to intersect ',

. ** Whitehead’s Method of Extensive Abstraction ”, The British Journal
for the Philosophy of Science, 1V, No, 15 (1953 ). pp. 215-16: See,

pp. 219-26,
* Whitehead's Method », pp. 216-19 and 222-26.

. Philosophy of Whitehead, pp. 118-19. ( Prof, Mays only says that

«Whitehead does not always make it clear whether his method i3 to be
taken as an algorithm or 4s an exact description of some actual process
of convergence”, He futher says that * Nicod...suggested that
Whitehead'’s contribution could be tauken as the constructicn of a pure
geometry rather than as an analysis of the real World .

. E.g., Process and Reality, p. 421,

C. D. Broad, Scientific Thought, reprint, London 1932, pp. 43-47; L. §.
Stebbing, 4 Modern Intreduction te Logic, rveprint, London, 1938,
pp. 446-52, esp. pp. 450-51,

. Scientific Thought, p. 43,

. An Enquivy Concerning the Principles of Natural Krowledge, reprint,

Cambridge, 1955, p. 104. In the Concepr of Nature (reprint, Cmn._
bridge, 1971 ), Whitehead says, *Thus an abstractive element -is !hq:
zroup of routes of approximation to a definice intrinsic character of
ideal simplicity to be found as a limit among natural facts,’

C. D. Broud, Scienrific Thought. p. 330. : Saperid

R. Dedekind, Essays on the Theory of Numbers (tr;. W, W. Beman ),
New York : Dover, n, d., esp. pp, 3-21; G. Cantor, (omnbunorﬁ {0
the Founding of the Tlteorv of Transfinite Num.brrs (tr. P.E.R.
Jourdain), New York, 1915,

2. * Infinzer-atomicity ', The Pakistan Philosephical Journal, X1, no, 13

{ October 1975), pp. 47-84, and X1V, no, 2 (Jan.-June 1976,
pp. 34-72, -
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