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DEVIANT LOGICS FOR QUANTUM MECHANICS

*If, as one believes, all mathematics reduces to the mathe-
matics of logic, and all physics reduces to mathematics, what alter-
native is there but for all physics, to reduce to the mathematics
of logic 7

Gravitation ; C. Misner, K. Thorne, and 1. Wheeler,

1. Introduction : Birkoff and von Neumann ' end their paper

on ‘The Logic of Quantum Mechanics® by two questions,
one of which is * what experimental meaning can one attach to
the meet and join of two given experimental propositions ?*
Since then a number of authors have followed the lead given by
them and advanced the subject of quantum logic to a conside-
rable extent. By now, as a result of this activity, quantum logic
has attained a fair level of sophistication. But looking through
the literature, we find that hardly anywhere one has tiied to
answer the above question within the scope of quantum mechanics,
although attempts have been made to give operational meanings
to the logical connectives. However, these attempts always seem
to draw on the examples and experiences outside quantum
mechanics, sometimes even outside physics. The notable contri-
butions to the advance of quantum logic have been made, among
others, by Feyerabend, Finkelstein, Giles, Putnam, Reichenbach,
van Fraassen and von Weizsacker.

Till the time of Birkoff and von Neumann paper appeared, no
one perhaps suspected that the advent of quantum mechanics as
a science to deal with the microworld of molecules, atoms, nuclei
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and the like would bring about the change in the principles of
classical logic. If one considers the laws to be consistent with the
world of experience, one nceds to conclude that the classical logic
must be compatible with classical machanics which deals with the
macroworld and indeed it is. Even though the rules of classical
logic appear to have been laid down g priori, one strongly
suspects that these rules were formulated by their authors with
intuition based on everyday experience of the world around
them. Hence, they seem (o agree with classical physics, in
general. with classical thought. The edifice of classical logic
built by its authors is truly imposing. No one would have
suspected that a crack would develop into this edifice as a result
of the advent of quantum mechanics. Birkofl and von Neumann
were the first to notice it. Ifthe arrival of @ new science required
to study the microworld produced cracks in the edifice of
( classical ) logic, then the logic is not merely the ¢ creation of
the human mind " as it must have been thought of, but that it is
empirical. Logic is determined by the picture of the world, the
classical logic by that of the mucroworld and quantum logic by

that of the microworld,

In this paper we have attempted to present the logic of guantum
mechanics by examining the measurement processes in  quantum
mechanics to determine the meanings of the logical connectives
and to find whether they retain  the meanings assigned (o them
in classical logic or they acquired new meanings in the light of
strange new features of the guantum mechanical measurement
processes, Most authors of quantum logic, particularly Finkelstein®
and Putnam® have emphasized the lact that connectives  in
quantum logic retain classical meunings on account of opera-
tional definitions, though quantum logic differs from classical
logic in only one respect. It is the fuilure of the distributive law:
L (By Y)=(ocp ) wac s X)) ol the classical logic. We

i\ IR}

find in our investigations that in view of the peculiar nature of
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quantum mechanical measurements, the meanings of the logical
connectives needed to conjoin simple experimental propositions
to form compound statements need changes. It is seen that with
the new meanings given to the logical connectives, this distributive
law remains valid.

2. Experimental Propositions Of Quantum Mechanics : It is
welknown that in classical mechanics the state of 4 mechanical
svstem at any time is completely known if one specifies n general-
ized coordinates *q’ and n generalized momenta ‘p’ at that time,
where n is the number of degrees of freedom of the mechanical
system. These can be obtained by solving Hamilton's equations
of motion with the initial conditions specified by the values of *q’
and ‘p’ at time t=o0. Quantum mechanical state of microscopic
systems is represented vy a certain wave-function ¢ ( or a state
vector Ix:=) which can be expanded as a linear combination of
eigenfunctions ui ( or eigenvectors /i =) of an operator represe-
nting an observable. The wave-lunction ¢ ( or the state vector
[x =) is obtained by solving a differential equation known as
Schrodinger equation which is of first order in time, the initial
condition being the value of  at time t=—o0. In what follows we
accept quantum mechanics in its conventional form as the correct
representation of the microworld and accordingly build up our
formalism,

Let an observable in quantum mechanics be denoted by A
with the corresponding Hermitian operator denoted by the same
letter A for convenience. We know from quantum mechanics
that A must possess sufficient number of eigenstates, often infi-
nite, that any state vector whatever can be expanded in terms
of the corresponding eigen-vectors. The spectrum of the corres-
ponding eigenvalues may be discrete (finite or denumerably infi-
nite, degenerate or non-degenerate) or continuous. For our analy-
sis we shall assume that the eigenvalue spectra of all the opera-
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tors we shall introduce, ne discrete, finite and non-degenerate.
Let the eigenvectors of A be denoted by la, = where i-<1,2...,n
(<“ea). IT A represented an observable, then any arbitrary state
. n

vector Ix=- can be expanded as Ix>~ - Mg, =~ alx = If g

E i

denote the eigenvalues of A for the states la,-, then A la;=
a;1 a=-. The process of measurement in quantum mechanics
consists of three successive stages : (1) A preparatory stage when
the quantum mechanical system S is ‘prepared’ to be in an
n'rhilrury state I, considered as the initial state; (2) a working
stage in which the ‘prepared’ system S interacts with the measur-
ing apparatus (a macroscopic body), we shall call the analyzer

f
and goes over to the superposition state b — ¥ la;~ = e

F= ¥
and (3) a registering stage in which the system S is registered
in one of the eigenstates forming the superposition in the above
expression ( reduction of the wavepacket). Hence the process of
measurement can be described as

n
(I_) | B 2 3 la; T agl x> (3) la; =

;=1

Experimental Proposition (EP) is a statement of the form :
“The result of & measurement on a system S in the state Lo
and for the observable A is 7. The completion of this sentence
can be made in two ways. (I}« & real number a; giving the
vialue of the real dynamical variable (observable) A represented
by the Hermitian operator A at time t’" and (2)¢...that the
system, after the measurement is complete, is described by the

£l

state vector la;="". If the statement is completed in the manner
1), we shall call that statement as the experimental propositon
of the first kind (EP 1) and denote by, say, o, If the state-

ment is completed in the menner (2), we shall call that state-
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ment as the experimental proposition of the second kind (EP H)
and denote it by oc;”. Thus (EP I)is of the form M (S Alxs )==a,
and (EP 1) is of the form M(S Alx= ) la; >~ In the present paper,
we shall concern ourselves with EP I's only and drop the suffi-
xes | and I1.

3. Experimental Meaning of Logical Connectives :
In this scction we shall consider the problem of introduc-
ing compound statements involving two or more EP's of the
type described in the previous section and giving experimental
meaning to the logical connectives conjoining them. We first
consider the case of an observable represented by the Hermitian
operator A with  the cigen-value spectrum a,, dy..onady. lags,
lay =, . lan= are the eigenvectors of A belonging to these
cigenvalues. We assume to make measurement on identical
copies of the system S prepared to be in the sume state [x=> to
measure the observable A, We denote, as in section 2, the EP’s
M (SAlx> ) = a; as o¢;. The alorementioned measurements will
furnish the results a, or a, or a, or ..., not nccessarily in that
order, with probability measure associated with each of them.
This means that a, or a, or ... are the possible (exclusive) results
of the measurement process. If we put n =-2, then we may say
that result of this measurement is ecither a, or a, but never
both at the same time, when measurments are repeated on the
identical samples in the same state. This measurcment statement
(forn — 235 can be translated into the logical language as
o, \V oy, Where the connective *V© is used in the exclusive
sense. Lct B be another observable with the corresponding
Hermitian operator B with the complete set of eigenvectors
Ib;>. This observable may or may not be compatible with the
observable A. The measutements on identical copies of S in
the state Ix> to measurc A and B not simultancously, but
successively, should give the results as a's or bs occuring
singly at a time. Such measurement results can be put into
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the logical language us o« B with *V/7 again in  the

.
exclusive sense where the EP 5, is M (Sglx> ) = b;. The results of
successive measurements of one or more observables on identical
copies of a quantum mechanical system, all prepared to be in a
given state, are expressible in terms of an exclusive disjunction
given by the truth-table 1,

Truth-table 1.

Having given the experimental meaning to disjunction, we now
turn to the conncctive © - ° symholizing conjunction. Let L and
M be Hermitian operators corresponding to two observables. Let
the discrete eigenvectors of these operators be denoted by | i
and 1 m;-- and the corresponding eigenvalues to which they belong
be |y and m. The indices i and j run through discrete mtegral
vdlues. Obviously [ I, - and | m;- form a complete sct of eigenve-
ctors, We want to give meaning to the problem of simultaneous
measurement of two obscrvables. Suppose an cxperiment to
measure simultancously the values of L and M is performed on
a system S in an arbitrary state 1 x =, we shall consider the result
as read on two guages - L-guage and M guage — simultancously.
We imagine this as some kind of coincidence measurement tech-
nique used with L-guage and M-guage expected to respond at the
same time. If we denote the EP M(Sq jx= ) =/, as A iand M(Swmixs)

mjas &, then the L-guage reading I, and M-guage reading
m; gives the experimental proposition ‘the results of the simulta-
neous mesurement of L and M on S in the state 1 - arc
the reil numbers | and m. This EP can be translated into the
the logical lunguage as X\ . £ . Hence the measurement of gy
observables furnishes us with the EP which is a conjunction of
two EP’s.

In studying conjunction we must distinguish between two
cases @ (1) when the two operators commute i, ¢, the correspond-
ing observables are compatible, and (2) when the two operators
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do not commute and the corresponding obscrvables are incomp-
atible.

Case (1) Let the two commuting operitors be denoted by A
and B, they satify | A, B ] -— O. We know from a well-known
thecorem in quantum mechanics that A and B have a common
complete sct of gigenvectors, hence we put la; - == by = la; by
where we have indicated the common set of eigeavectors as
la; b - in which the letters a; and b, with the same subscript i’
are inserted within the ket symbol 1 - sigifying that the ket la, b,_-
is an cigenket of both A and B. Since A and B arc observ-

H
ables, we have Ix2- — X la; by ~2ap by 1 x- . A simultancous
i=1{
measurement of A and B on the system S in the state [ x - will
furnish some a7 as the reading of the A—guage and some b, of
the B—guage simultancously, where A 1a; b~ — a;1a; b= and
Bla; b — b la; b= ( reduction of the wave—packet ) . In the
togicul language, this is oci /A 4j. We note that the index—set
I, such that i & I, is so arranged that the resulfts of the above
measurement are a; b; . This means that when A—guage reads a'
B—guage reads b; . It never happers that the results are ai and
b; with i == j, hence the statement oci /A B/ (i3 j) is always
false in this case. To construct the truth-table for conjunction
*A° in the case of compatible observables, we consider the
experimental set—up with two coincidence guages to read the
values of A and B. If the A—guage reads a; and B-guage simult-
ancously reads by, then we assign the truth value T to both o,
and 5 and o, A5 is also assigned the truth value T. I the
A-guage registered reading a;, but B-guage does not register
and F
to og; A 4. The reason is that by the very nature of the coincid-

anything, we shall assign the truth value T to o«;. F to 5
ence technique, this may be censidered as the apparatus mallunc-
tion and the corresponding reading is rejected. So also i we
assign F to o, T to f3, then oc; A B has the truth value F,
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Lastly, if both guages fail to respond, we assign F to o, F to &,
and F to of A py, leading to the truth—table 2.

Truth-tahle 2
We sce that the above truth-table coincides with that of classical
logic.

Case (2) : Let the two non-commuting Hermitian operators
be denoted by P and Q. These correspond to two incompatible
observables. Let P and Q satisfy [P, Q] — iR, where R is also a
Hermitian operator corresponding to an observable, We denote
the EP “the result of the measurment of P on S in the state
Ix>- is p; (a real cigenvalue) as " and the EP “the result of
the measurement of Q on S in the state B>~ is q; (a real cigen-
value) as ¢, In these EP’s the results of measurements of P
and Q are supposed to have the sharp values p; and q; with the
standard deviations /A.p and /g equal to zero. According to the
uncetainty principle, if P and Q are measured simultaneously,
Ap Aq 2z 5, where ris the expectation value of R in state Ix>.
From this we see that ¢, is truc if Ap— 0 and ¢ is true

it .q - 0, but % is false if Ap =20 and y;is false il Aq=207

I
]

From the uncertainty principle, itis clear that ¢ A ¢, is false
ouly in the case when both ¢ and ¢; are true, but it is true
3.

otherwise, resulting in the truth-table
Truth-table 3
For the purpose of cxtending the analysis to more than two
EP’s conjoined by the disjunction *\/°, let us consider a Hermi-
tian operator A corresponding to some observable. An EP of

r

+ In fact, for clarity, one may say that o, is true if Ap<: 5f q
' AN

o r 5l JSoslary S :

and ¢ is true if é-;q-..‘--z-EF,bul o ts ftalse 1 Apz= -ézaand
(o o ; r

yjis false if Jgz2—o——r

27 &
L4
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the form M(Salx) = a; is detoted by oc;, i==1, 2, 3, ... nl<le=),
We know from quantum mechanics that the system can be only
in gne state at a time. Hence at some time if oo ( 1K1K n)is
true then all the other oc,'s with k =1 are false at that time.
We write o, 2, Y ... YV «cp Lo mean that the system S has the
property described by the observable A. Similarly for another
Hermitian operatar B with the spectrum ol eigenvalues b, by, ... b,
(in general m = n ), an EP of the form M[ Spix] = b; will be
denoted by 2. Using the same argument, we concider 8,V f, /.

B as an always true statement to mean that the system
S has the property described by the observable B. Clearly in the
above expressions, we see that the disjunction is true if only one
disjunct is true and others are false at a time, the disjunction
is false if two or more of the disjuncts are true at a time. This
is the requirement of an exclusive disjunction we have introdu-

ced in our quantum logic.

Regarding the connective * /' signifying conjunction, we
cannot extend its meanings to a statement of the form oc A A
v /. . of more than two EPF'S as this statement cannot be
given a meaning, particularly for incompatible observables, since
it refers to the result of simultaneous measurement of more than
two observables. Even in quantum mechanics such measurements
are hardly required and discussed. As the connective < /A’ conjo-
ins two EP'S which express the result of simultaneous measure-
ment of two observable on a system S in an arbitrary state, we
consider a statement of the form oc; /A oc; as always false, where
o; and o are the E P's corresponding to the sgme observable, This
is due to the fact that if oc; is true, oc;is false and that an obscr-
vable is compatible with itself which follows the truth-table 2.
However, the statement © the system has the properties described
by the observables A and B at the same time " will be described
by the expression (oc, Vorgy . oo} A (B VE YV ...V Bn)
according to the meaning given to the connective
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*AT I A and B are compatible observables, the expression
(cyyy oy e yyocn YA By Bay ... v Bn )» where we have
put m-n, is an always true statement. If P and Q are incompati-
ble observables with the corresponding EP's denoted by ¢ and ¢
then the statements (g, v 92y v ) and (¢ ey o v ¥n)
are alwys true. but the statement
(91 VsV o g A (¥ NV Vi)

where, in gencral, m = n, signifying that the system has the
properties P and Q at the same time, is an always false stacment.
It is often implied that a quantum mechanical systm S simultane-
ously possesses properties described by the incompatible obser-
vables P and Q at all times and that it is the measurement
process that introduces the uncertainty, This is evidently false as

the above result shows.

4. The Distributive Law : In the classical logic, we have two

different forms of the distributive law. We shall state each forms

for the two cases below. The gcn{:ralizationf is obvious. One

form is

{I}) a«V (BAY )==(cVB)A(cV ¥) and

(') (cAB)Y (¥ A8)=(xcV v ) A{ocVE)A(BY ¥) A
(5 3)

The other form is

(1) cA(BY ¥ )=(cAB) Y (A Y ) and

() (VB A (Y V3)=(a A Y)YV (@AB) YV (BA ¥) W/
(t(j A 8) y

First, let us consider the form (1). We apply it to two

observables A and B with a complete spectrum of only one

eigenvalue and two eigenvalues respectively. Then (I) can be

written as ot V (B, ABy)=(ec VE) A (c VE:). In this ex-

perssion we note, on the right hand side, there occur expression

of the form (oc vV %,) and (oc V/ ;) conjoined by the connective

¢/\°. These expressions are obtained by conjoining (wo EP’s



Deviant Logics for Quantium Mechanics 11

corresponding to observables which may themselves be incom-
patible with other, so that it is impossible to say whether the
EP’s that correspond to (oc V' §,) and (oc V B,) are compatible
or incomatible with each other. Therefore, within the scope of
definition of the connective ¢/ * which has difierent truth-tables
for compatible and incompatible observables, these EP’s cannot
be conjoined together by ¢ /A °. This means that this form of the
distributive law lics outside the ambit of our logical system. In
any case, this form has not even been mentioned by Finkelstein
and Putnam. Similarly in the expression - oc, /i ocy) V (B, /1 B,)

(oo, V By) A (e, VBy) A (o, VB ) A (ocy V By) the right hand
side contains expressions (o, V£ ), (o, ¥V 8,), . conjoined by
the connective *. ", This expression involves more than two
EP's conjoined by the connective < /2" to which it is not possible
to give an empirical meaning. Besides the EP's { o,V 8, ),
(oc, vV 8,). . may correspond to neither compatible nor incom-
patible observables and thus cannot be meaninglully conjoined
c A

together by the connective Hence we shall speak no more

about this lorm of the distributive law in this paper.

Secondly, we consider the form (1I) which is the form ad-
missible in our formalism of gquantum logic. Here we shall
distinguish between two cases : Case (1) : The two observables
A and B are compatible and the corresponding operators
commule.

Case (2) : The two observables P and Q are incompatible and
the corresponding operators do not commute.

We {irst consider case ('I). In this case, we shall show that

the distributive law holds when (a) the operator A has the

complete spectrum of one eigenvalue and operator B has two,

(b) A has the spectrum of 2 eigenvalues, B also has two and

(¢
W

A has the spectrum of 3 eigenvalues and B also has three.
shall show this by means of appropriate truth-tables.

—

[¢]
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(a) Let the EP : M ( SAlx> )==a be denoted by oc and the
EP: M ( SBix> )=b; by 5, i=1, 2. In the case (a) we cons-
truct the following truth-table 4.

Truth - table 4

The truth values in the sccond and the seventh columns of
the truth-table 4 show that the distributive law oc /A (8,-8;) ==

{oc ARy) V (o ARy) holds.

We now consider the case (b), where the operator A has the
spectrum of two eigenvalues and B has also two. In this case
we denote the EP's corresponding to the observable A as oc and
o, and the EP's corresponding to the observable B as , and £&,.

For this case, we have the following truth - table 5.
Truth-table 5

The truth values in the columns 4 and 12 in the truth-table 5
show that the distributive law holds. Finally, in the case (c)
we denote the EP’s corresponding to the observable A as oc,, oty
and «, and the EP's corresponding to the observable B as
5. By and B, In this case we have the following truth-table 6.

Truth—table 6

The truth values in the columns 8 and 19 in the truth-table 6
show that the distributive law holds even in this case. It is
possible to construct truth-tables for more complex cases involv--
ing more than three eigenvalues cach and see that the distribu-

tive law holds in all these cases.

Secondly, we consider the other case of incompatible obser-
vable. Again, here we look into (a) P has only one cigenvalue
and Q has two, (b) P has 2 eigenvalues, Q has also two and
(¢) P has 2 ecigenvalues but Q has three. Let the EP
M(Spix> ) = P be denoted by ¢ and the EP: M(SQix> )= ¢
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by ¢. In the case (a) we denote EP corresponding to the obser-
vable P as ¢ and the EP’s corresponding to the observable Q as
¥, and ¢,. When we construct the truth-table 7 for this caes,
we find that the truth-table has the following form.

Truth - table 7

Here we have a surprise ! The distributive law has failed !
But looking closer, we see that this i1s expected as the observable
P, which has only one eigenvalue, is a constant like the electron
charge. Hence the operator P corresponding to this observable
is just a number which commutes with every other operator, that
is, the observable P is compatible with every other observable.
We make a mistake in the fiirst place-in taking P with one eigen-
value incompatible with Q.

In the case (b) we denote the EP’s corresponding to P as
w, and o, and the EP’s corresponding to Q as ¢, and ¢,. In
this case we are led to the following truth-table 8 .

Truth-table 8

The truth valus in the columns 2 and § indicate that the dis-
tributive law holds. Finally, in the case (¢) we denote the EP’s
corresponding to P as o, and ¢, and the EP’s corresponding to
Qas ¢,. ¢, and ¢, (note that ms=n here). We construct
the following truth-table 9 .

Truth-table 9

In this case as well, we sec that the distributive law holds.
One can easily verify this for more complex cases. From the
above ftruth-tables, we secc that the distributive "law holds for
EP’s both in the case of compatible and incompatible observables.
The apparant failure of the law in the case (2a) is actually the
confirmation of its validity. ’
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5. Connectives of Negation, Implication and Equivalence :
It can be seen from the above analysis that the distributive law
in the from

( MV AV ) A (8, VeV ) = (Ahe) V
(XA gV ooV {XN/ #;) V ... holds for the EP's corres-
ponding to both the compatible and incompatible observables.
We have seen that this from, but not the other, is meaningful in
our empirical logic within the scope of meaning we have assig-
ned to the connectives of disjunction V' and of conjunction
“/\". Another connective we have not mentioned so far and
which has a basic function in further development of our logical
system is negation *|". If we denote the EP : M ( Spixs ) =1, as
Ni- then we shall denote the EP: M (SpLixs ) =1j, j==ias
"I\ We see that the meaning given to the connective of nega-
tion is quasi-classical.

Now that we have given empirical meanings to the connec-
tives <% ", </ "and <77 we set to define some additional connec-
tives like those of implication and equivalence for both campa-
tible and incompatible observables. Our definition of implication
happens to provide the same truth-table for it, in these cases as
in the classical case : a conditional with a true antecedent and a
false consequent is false. This requires that in the case of
compatible observables we put (cc DB)= (Tlec V B) V ({Tlec AB)
where oc and (% are the EP's corresonpding to the compatible
observables A and B. We illustrate this by the following truth-
table 10, which can easily be constructed using the above
expression on the right.

Truth -table 10

In the case of incomptible observables, we have

(eD¢) = (T V) V 1 {TeAY)
where ¢ and ¢ are the EP’s corresponding to the incompatible
observables P and Q. This also leads to the same truth-table 10
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given above. In the above two expressions we have already
used the connective ‘=" which is known as that of equivalence.
The concept of equivalence in the sense that two EP’s (occuring
on either side of that connective) are materially equivalent when
they have the same truth-value ought to be accepted in quantum
logic regardless of the nature of EP's as to whether they corres-
pond to compatibles. This requires that if ) and & are two
EP’s corresponding to two observables either compatible or
incompatible  with cach other, then we put the equivalence
relation between themas (A=# ) = (XD &)Y 7I( & D X).
This holds in both cases. However, in the case of compatible
observables with the classical meaning of < ', one may also put
(c=p)=(x 2B}

.\

\ (BDex).

Finally, we present a few consequences of the empirical mean-
ings given to the set of connectives *V' ¢/ ' and <. Since
experimental meaning have already been assigned to these conn-
ectives, one need not strive to seek empirical meanings to other
connectives defined in terms of these, such as implication and
equivalence. Yet it is [ruitful to briefly investigate the following
questions : (1) For which pair of EP's X\ and #, the presence
of one, say ). entails the presence of the other? (2) For
which pair of EP's ) and , the presence of one is entailed by
the other ? Both questions can be answered within the framework
of our logical system, provided we distinguish between two cases
of compatible and incompatible observables. (1) If o, and 8,
are the EF's corresponding to two compatible observables A and
B, we assert that the presence of o, (or £} entails (oc, "/ B) v/
(or; A &) Logically this meansthat oc; D[ (oc; ¥ ;) v (oc; A B)]
is a tautotogy which indeed it is. Empirically it would mean
that if oc; is true (or if £; is true) then [(oc;V B;) v (o, A B)]
is true also, but the converse is not true. This can be seen from
the following truth-table 11.
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Truth-table 11

The above discussion shows that when oc; is true (or when
f is true), then oc;\/ B; (signifying successive measurements of
A and B ) and oc; A B, (which signifies simultaneous measurme-
nts of A and B) are two mutually exclusive EP's. Similarly if
if p; andy; are the EP’s corresponding to two incompatible
observables P and Q ,we assert that the prcscnce of ¢ (or ¥ )
entails the presence of (¢ Vy¢;) V7] (e;Ay;). Tt is easy to
verify that ¢, [ (g V¢;) V 7 (g A i) ] is a tautology and
that if ¢ is true ( orif ¢;istrue ), then [( ¢ V) V7
(w /" ¢;) ] is true also. Notice the presence of ~| (¢ A ¢;)
in the case of incompatible observables instead of (g /A ¢)).
Hence when o, is true (or when ¢, is true). then s, V' ¢, (signify-
ing successive measurements of P and Q) and | ( g A ;)
( signifying simultaneous measurement of P and Q) are two
mutually exclusive EP’s.

.{2) For compatible observables, one easily verifies that o, (Or £,)

is entailed by ( oc; /A & ). This means that if (or; A 8,) is true
then or; as well as B is true and that (o, AB) D o) (or B))
is a tautology. In a similar fashion, one finds that o, (or ¢, i)
is entailed by 7] (% A ¢;), where w; and ¢; are the EP’s for
two incompatible observables.

6. Concluding remarks : We have shown in the paper
that the basis of logical statements, as s often claimed. is
not just & priori, but has to take into account empirical truths.
A logic originated and developed during the classical period
cannot but be at variance with empirical truths of gquantum
mechanics developed to explain the behaviour of the microworld.
If logic is claimed to be empirical, is it merely dropping a well-
known law of classical logic and nothing else ? We answer this
question by saying that it is much more. If the logic is cmpiri-
cal, then one must investigate the empirical meanings of the



Deviant Logics for Quantum Mechanics 17

basic connectives like those of disnjunction and conjuction in
the light of new insights into measurement processes of the
microworld. Do the classical meanings of these connectives, which
have been time-tested in the classical context, remain unscathed
when we look beyond the classical world and peep into the
microworld of atoms, nuclei and elementary particles or do they
undergo any change ? Our investigation has shown that we have
to adopt the latter alternative. Im this process we find that we
have to distinguish between compatible and incompatible obser-
vables of quantum mechanics and adopt two different deviant
logics for these cases.

APPENDIX I

In this appendix we present two truth-tables 12 and 13 for
EP's corresponding to compatible and incompatible observables
respectively and list the laws in formal logic which hold and
which do not hold in our deviant logics.

Truth-table 12

In the above table, the disjunction ¢V’ is an exclusive dis-
junction. The negation and conjuncion happen to coincide with
their classical counterparts, so do the implication and equivalence.
We have expressed the implication in terms of the above conne-
ctives of negation, disjunction and conjuction as (<D8) =
(Tloc VB) v (Tlec AB). We express the eqgivalence (or = 8)
as either (ocDB) v 77 (BDoc) or (acDB) A (BDoc).

Using the above truth-table 12, one may easily verify the
following *
(1) (ocy Tloc) is at autology, (2) (oc A Tlec) is a contradiction,
(3) Modus Ponens holds, (4) Modus Tollens holds, (5) Dis-
junctive Syllogism holds, (6) Hypothetical Syllogism holds,
(7) Addition fails, (8) Simplification holds. (9) Conjunctiou
o
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tible observables can be expressed in terms of <71, <V and
Mg as follows :

E V ( oA x )
=TV al# AT AT TeAG (¥AX) ]

== [ _](T} v (’:!-m‘ (‘lb' A cl x) ] A cl 1 [ —-:FP A ol A_I ('i"f "}\ cl x} ]
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