Department: Microbiology, Savitribai Phule Pune University Course: M.Sc. Duration: 2 years

Semester III			
Subject	Subject Title	No. of	No. of
Code		Lectures/	Credits
		Practical	
MB3.1.2 C	Instrumentation and Biophysical Techniques		02
	1. Spectroscopic Methods : Principles and Applications	12	
	of UV-Visible, Fluorescence, Infrared, NMR, X-ray		
	Diffraction and structure determination.		
	2. Basic Concepts. Principles and Applications Of	5	
	Centrifugation Methods: Ultra centrifugation.	-	
	Differential centrifugation. Isopycnic and Rate zonal		
	centrifugation.		
	3. Basic principles of optical microscopy. Concept of		
	resolution and magnification. Different contrast	13	
	enhancing techniques: Phase contrast, dark field.		
	differential interference contrast. Fluorescence etc.		
	Concepts of digital microscopy and image analysis.		
	Confocal microscopy and introduction to super		
	resolution microscope. Electron and crvo-electron		
	microscopy, Introduction to magnetic and optical		
	tweezers.		
MB3.2.2 C	Molecular Biology II		02
	1. Prokaryotic and Eukaryotic Transcription and its	13	
	regulation		
	a. Prokarvotic Transcription and Regulation:		
	RNA Polymerase, Transcription unit, Initiation-		
	promoter recognition, Elongation, intrinsic and		
	rho-dependant termination, Concept of Operon		
	(lactose, galactose, arabinose, tryptophan,		
	histidine, phage lambda), Positive and Negative		
	regulation, Regulation by attenuation, Phage		
	strategies to regulate transcription,		
	antitermination.		
	b. Eukaryotic Transcription and Regulation:		
	RNA Polymerases I, II and III, Transcription unit		
	for each polymerase, Transcription factors,		
	Processing of transcripts, promoters and		
	enhancers.		
	c. Post Transcriptional Modifications: Processing		
	of hnRNA, tRNA, rRNA, 5'-Cap formation, 3'-end		
	processing and polyadenylation, Splicing, RNA		
	editing, Nuclear export of mRNA, mRNA		
	stability, Catalytic RNA. Transcriptional and post-		
	transcriptional gene silencing.		

Semester III			
Subject Code	Subject Title	No. of Lectures/ Practical	No. of Credits
	2. Prokaryotic and Eukaryotic Translation and its regulation	13	
	 b. Prokaryotic and Eukaryotic Translation: Activation of tRNA, Initiation – role of initiation factors, Shine Dalgarno sequences, Elongation – Role of elongation factors, translocation of ribosomes, Termination – termination codons, role of release factors, GTP as an important source of energy for translation, Fidelity of translation. c. Co and post-translational modifications and membridation 		
	 d. miRNA and RNAi, CRISPER-Cas system and its application to molecular biology. e. Molecular biology in organogenesis and 	04	
	 e. Molecular biology in organogenesis and development. 3. Protein Targeting-Transport: Transport of proteins and molecular chaperones, Protein stability, Protein turn over and degradation. 	04	
MB3.3.2 C	Microbial Technology		
	 Microbial Strain Improvement: The need for strain improvement programme for industrial applications, Strategies of strain improvement for primary and secondary metabolites, Problems associated with strain improvement programme, Preservation of cultures after strain improvement programme. Basic Aspects of Bioengineering: Design of 	02	
	fermenter/bioreactors- Design aspects of flask, Stirred tank reactor, Air-lift fermenter, Tower fermenter, Kinetics of operation of bioreactors, Batch, Fed-batch, Continuous processes, Design and operation of immobilized cell reactors.	03	02
	3. Aeration and Agitation of Fermentation Broth: Aeration-Theory of oxygen transfer in bubble aeration, Oxygen transfer kinetics, determination of K_{La} , Agitation-Design of impellers and their hydrodynamics, Fermentation broth rheology and power requirements for agitation-Concept of Newtonian and non-Newtonian fluids, effect of broth rheology on heat, nutrient and oxygen transfer, Reynolds number, power number. aeration number.	04	
	4. Monitoring of Process Variables: Use of various types of sensors and biosensors for monitoring environmental parameters (pressure, pH, temperature,	03	

Semester III			
Subject Code	Subject Title	No. of Lectures/ Practical	No. of Credits
	DO, DCO ₂ etc.)		
	5. Concept of Primary (Growth Associated) and		
	Secondary (Growth Non-Associated) Metabolites:	03	
	 Their control, Kinetics of growth and product formation (growth rate, yield coefficient, efficiency). 6. Down-stream Processing and Product Recovery: 	10	
	Recovery of particulates (cells and solid particles), Recovery of intracellular products, primary isolation (extraction, sorption), Precipitation, Industrial	10	
	processes for chromatography and fixed bed		
	adsorption, Membrane separations.	05	
	With Respect to Following Examples: Vitamin B	05	
	and C, Antibiotics (Penicillin acylase, Cycloneximide, Tetracyclins) Microbial enzymes (Chitinase Linase)		
	Polysaccharide (Xanthum gum and PHB). Citric acid		
	Ethanol, Wine, SCP, Recombinant and synthetic		
	vaccines, Bioemulsifier/Biosurfactant.		
MB3.4.2 C	Ecology, Environmental and Agricultural		02
	Microbiology		
	1. Ecology: Interactions between environment and biota,	05	
	Concept of habitat and ecological niches, Limiting		
	factor, Energy flow, food chain, food web and tropic		
	Community-Concept Structure Dominance		
	Fluctuation and succession		
	2. Geomicrobiology: Microbes in metal extraction.	05	
	Mineral leaching and mining, Microbes in petroleum product formation.		
	 Space Microbiology: Historical development of space microbiology, Life detection methods-Evidence of 	10	
	metabolism (Gulliver), Evidence of photosynthesis		
	(autotrophic and heterotrophic).		
	4. Bioremediation : Treatment of solid saccharmication,		
	and liquid industrial wastes. Microbial degradation of		
	pesticides. Xenobiotics. Microbial enhanced oil	02	
	recovery (MEOR), Phytoremediation, Bioremediation	÷ -	
	- Advantages and disadvantages.		
	5. Agricultural Microbiology: Useful and harmful		
	microbes to crop growth. Microflora of rhizosphere and rhizoplane, phyllosphere and phylloplane. Plant	08	
	growth promoting rhizobacteria (PGPR), Biological		

	Semester III			
Subject Code	Subject Title	No. of Lectures/ Practical	No. of Credits	
	control agents: <i>Bacillus thuringiensis, Trichoderma</i> , Baculoviruses and Chitinase producing fungi, Bacteriophages.			
MB3.01.3	 Bacteriopnages. Environmental and Agricultural Microbiology (Any 15 Practical) Effect of Plant growth promoting rhizobacteria (PGPR) on plant growth in normal and high salinity conditions. Bioleaching of metals from waste. Utilization of microbial consortium for the treatment of solid waste. Production of fungal biopolymers (chitin and chitosan). Waste water analysis: pH, conductivity, total dissolved solids (TDS), Dissolved oxygen (DO), Chemical oxygen demand (COD), Biochemical oxygen demand (COD), Biochemical oxygen demand (BOD), alkalinity, chloride and hardness measurements. Removal of suspended solids by sand filter method. Determination of heavy metals (Fe/Cu) by spectrophotometric methods. Decolourization/adsorption dye. Use of Fenton reaction for degradation of pollutants.	03P 02P 02P 03P 02P 01P 01P 01P 02P 02P 02P 02P	03	
MB3.02.3	 10.Photocatalytic degradation of polutants. Microbial Technology (Any 15 Practical) 1. Isolation of industrially important microorganisms for microbial processes (Organic acid / antibiotic / enzymes / amino acid) and improvement of strain for increase yield by mutation. 2. Lab scale media optimization, production and extraction for any two of the following: Organic acid / Antibiotic / Enzyme / Amino acid / Wine / Biosurfactant / Polysaccharide / PHB production. 3. Preservation of industrially important bacteria by lyophilisation. 4. Cell disruption for intracellular enzymes by various extraction methods. 5. Enzymatic clarification of fruit juices. 6. Culturing of <i>Chlorella / Spirulina</i>. 7. Liquefaction and saccharification of corn or molasses. 8. Biomedical applications of microbial products. 	04P 06P 01P 01P 01P 02P 01P 02P 02P 02P	03	

Semester III			
Subject Code	Subject Title	No. of Lectures/ Practical	No. of Credits
MB3.03.2	Advanced Instrumentation Techniques		
	(Any 10 Practical)	01D	
	1. Fluorescence microscopy analysis of five cells.	01P 01P	02
	2. Cell segmentation and image quantification. 3. NMR and ETIR spectroscopy	01P 02P	02
	4 Determination of surface and interfacial tension using	021 01P	
	Tensiometer	01P	
	5. Fluorescence lifetime measurement and determination	011	
	of quantum vield.	02P	
	6. Next generation DNA sequencing (NGS).	03P	
	7. Mass spectroscopy.	01P	
	8. Separation of biomolecules using HPLC and GC.	02P	
	9. Real-time quantitative PCR.		
	10. Application of CRISPER-Cas system.		
B3.1.2 E	Cancer Biology and Clinical Immunology		02
	1. Cellular transformations during neoplastic growth,		
	Classification of tumors based on histological,	05	
	physiological, biochemical and immunological		
	properties, Tumors of lymphoid system (lymphoma,		
	myeloma, Hodgkin's disease).	10	
	2. Different mechanism of cancer cell adaptations,	12	
	Hallmarks of cancer, Tumor suppressor genes and		
	oncogenes, lumor microenvironment and cancer cell		
	neterogeneity, Physical and Diological factors		
	heterogeneity and cancer stem cells Molecular		
	mechanism of metastasis Enithelial to mesenchymal		
	transition mitogenic cell signaling (Ras-Raf-MAPK		
	ErbB. c-mvc. signaling pathways). Concept of tumor		
	associated and tumor specific antigens, role of		
	immune system in cancer, Immunosurveillance and		
	immunoediting.		
	3. Cancer Diagnostics: Conventional and molecular	03	
	methods, Clinical grading of tumors, Cancer therapy:		
	basic principles of chemotherapy and radiation		
	therapy, Emerging concepts in cancer therapy- Cancer		
	immunotherapy, Passive and adoptive cancer		
	immunotherapy, hyperthermia.		
	4. Immunological Disorders: Pathophysiology,	10	
	diagnosis, prognosis and therapeutic approaches to:		
	a. Immunodeficiency disorders – Phagocytic		
	deficiencies, humoral deficiencies, Cell mediated		
	deficiencies, combined deficiencies and		
	complement deficiencies.		

Semester III			
Subject Code	Subject Title	No. of Lectures/ Practical	No. of Credits
	b. Autoimmune disorders (Immunopathological		
	mechanisms and theories of autoimmunity) -		
	Rheumatoid arthritis, Systemic Lupus		
	Erythomatosus (SLE), Multiple myeloma,		
	Myasthenia gravis.		
MB3.2.2 E	Gene Manipulation/Recombinant Technology		02
	1. Introduction to Recombinant DNA Technology	01	
	2. General Strategies for Recombinant DNA	02	
	Technology and Gene Cloning: genomic libraries,		
	cDNA libraries, single gene cloning.	10	
	3. Tools of Recombinant DNA Technology: Enzymes -	12	
	DNA ligase, Klenow enzyme, 14 DNA polymerase, Dolymuolootido kinoso Alkolino phosphotico Voctors		
	Polynucleotide kinase, Alkanne phosphatise, vectors		
	- Flashinus, cosinius, landua pilage, shuttle vectors, VACs, BACs, Baculovirus and <i>Pichia</i> vectors system		
	Plant based vectors Ti and Ri as vectors Veast		
	vectors Shuttle vectors Cohesive and blunt end		
	ligation Linkers Adaptors Homopolymeric tailing		
	4. Screening and Characterisation of Transformants :	10	
	Hybridization techniques, probe preparation using	10	
	radioactive and nonradioactive ligands, detection of		
	hybrids, site directed mutagenesis.		
	5. Genetic manipulation of animals.	03	
	6. Purification of recombinant proteins : His-tag, GST-	02	
	tag, MBP-tag etc.		
MB3.3.2 E	Environmental Pollution Monitoring and Wastewater		02
	Technology		
	1. Environmental Pollution Monitoring: Basic	02	
	concepts.	03	
	2. Natural Resources: Water and Land. Components		
	and structure of the environment, Levels of		
	organization in nature - Food chain and Trophic		
	structure, Biogeochemical Cycles, Interdependence of	10	
	man and environment.	10	
	5. Concepts, Causes and Consequences of Human		
	sources of pollution. Different types of pollution and		
	their global regional and local aspects. Air (Global		
	warming Green-house effect) Water Radiation F-		
	water, Radiation, L-		
	4 Wastewater Technology Wastewater treatment	15	
	system (unit process): Physical screening flow	15	
	equalization, mixing, flocculation, flotation, granular		
	medium filtration, adsorption, Chemical precipitation,		

	Semester III			
Subject Code	Subject Title	No. of Lectures/ Practical	No. of Credits	
	disinfection, Dechlorination, Biological: (aerobic and anaerobic, suspended and attached growth processes.) Working treatment systems and their analysis (reactions and kinetics, mass balance analysis, reactor types, Hydraulic character of reactors, selection of reactor type,) Critical operating parameters like DO, hydraulic retention time, mean cell residence time, F/M ratio etc, Effluent disposal, control and reuse. Water pollution control, Regulation and limit for disposals in the lakes, rivers, oceans, and land. Direct and indirect reuse of treated effluents and solid wastes, Current industrial wastewater treatment and disposal processes (Textile, food and dairy, paper and pulp manufacturing industries).			

Subject CodeSubject TitleNumber of CreditsMB4.01.8 CDissertation08Elective CoursesSubject TitleNo. of Lectures/ PracticalNumber of CreditsMB4.1.3 EAdvanced Techniques: Bioinformatics/ Computational BiologyNumber of Practical03MB4.1.3 EAdvanced Techniques: Bioinformatics/ Computational Biology1. Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis.152. Protein Modeling and Structure Based Approaches: Force field methods, cnergy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods, of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction, Prediction using inverse folding toil prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction, Prediction using inverse folding using ordinary differential equation, Modeling using ordinary differential equation, Modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling m	Semester IV			
Codeof CreditsMB4.01.8 CDissertation08Elective CoursesSubjectNo. of Lectures/ PracticalNumber of CreditsMB4.1.3 EAdvanced Techniques: Bioinformatics/ Computational Biology1.Number of CreditsMB4.1.3 EAdvanced Techniques: Bioinformatics/ Computational Biology03IIntroduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis.152. Protein Modeling and Structure Based regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence based methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence scoring, Protein function prediction, Modeling unity differential equation, Modeling using ordinary differential equation, Modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPK Biotehics and Biosafety / Quality Assurance and Validation in Industries 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyrip	Subject	Subject Title		Number
Image: second structure Carcelits Subject Courses Subject Title No. of Lectures/ Practical Number of Credits MB4.1.3 E Advanced Techniques: Bioinformatics/ Computational Biology 1 Number of Credits MB4.1.3 E Advanced Techniques: Bioinformatics/ Computational Biology 03 1. Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, of structure prediction, Sering. Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-recepto binding, Enzymatic reaction, Transcription and translation.	Code			of
MB4.01.8 C Dissertation 08 Elective Courses Subject Subject Title No. of Lectures/ Practical Number Of Credits MB4.1.3 E Advanced Techniques: Bioinformatics/ Computational Biology Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, dapplications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology. Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 10				Credits
Subject Code Subject Title No. of Lectures/ Practical Number of Credits MB4.1.3 E Advanced Techniques: Bioinformatics/ Computational Biology 03 03 I. Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 03	MB4.01.8 C	Dissertation		08
Subject Code Subject Title No. of Lectures/ Practical Number of Credits MB4.1.3 E Advanced Techniques: Bioinformatics/ Computational Biology 03 03 1. Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPK/Bioethics and Biosafety / Quality Assurance and Validation in Industries 10 03	Elective Cou	rses		
Code Lectures Identity MB4.1.3 E Advanced Techniques: Bioinformatics/ Computational Biology 03 1. Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, Algorithms-pairwise sequence alignments, Algorithms-pairwise sequence alignments, Algorithms-pairwise sequence alignments, Algorithms-pairwise, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/Bioethics and Biosafety / Quality Assurance and Validation in Industries 03	Subject	Subject Title	No. of	Number
MB4.1.3 EAdvanced Techniques: Bioinformatics/ Computational BiologyOracticalCreditsMB4.1.3 EAdvanced Techniques: Bioinformatics/ Computational Biology03031. Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis.152. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction, Significance analysis, Scoring techniques, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.15MB4.2.3 EIPK Bioethics and Biosafety / Quality Assurance and Validation in Industries03	Code		Lectures/	of
MB4.1.3 E Advanced Techniques: Bioinformatics/ Computational Biology 03 1. Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modelig molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPK Bioethics and Biosafety / Quality Assurance and Richst, Industrial Desien, Traditional Knowledge. 03			Practical	Credits
Diology1.Introduction and Biological Databases: Nucleic acids, proteins, Genomes-structure data bases, Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis.152.Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence based methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction.153.Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries03	MB4.1.3 E	Advanced Techniques: Bioinformatics/ Computational Biology		03
1.1. Infroduction and Diological Diabases. Nucleic 13 acids, proteins, Genomes-structure data bases. Search engines, Sequence data forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment-methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosfety / Quality Assurance and Validation in Industries 10 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge. 03		1 Introduction and Biological Databases: Nucleic	15	
attos, proteins, original forms and submission tools, Scoring matrices for sequence alignments, Algorithms-pairwise sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosfety / Quality Assurance and Validation in Industries 03		1. Infounction and Diological Databases. Nucleic	15	
Scoring matrices for sequence alignments, database Algorithms-pairwise sequence alignments, database similarity sequence alignments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based 15 Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignmentmethods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 10 03		angines. Sequence data forms and submission tools		
ScoringInducesforsequencealignments,Algorithms-pairwise sequence alignments,databasesimilaritysearches-BLAST,FASTA phylogeneticanalysisand tree building methods,Motif searches,Epitopeprediction,Dataminingtoolsapplications,Promoterandgeneprediction,comparativeanalysis.152.ProteinModelingandStructureBasedapproaches:Force field methods, energy, buried andexposed residues, Side chains and neighbors, Fixedregions, hydrogen bonds,Mapping properties ontosurfaces, fittingmonomers, RMS fit of conformers,Assigning secondary structures, Sequence alignment-methods, Evaluation, Scoring, Protein structureprediction,alignment algorithms, Sequence basedmethods of structure prediction, Significance analysis,Scoring techniques, Sequence-sequence scoring,Protein function prediction.153.Computational Biology: Introduction tomathematical modeling in biology, Basic concepts ofmodeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries03		Seering matrices for sequence alignments		
Algorithms-parwise sequence angiments, database similarity searches-BLAST, FASTA phylogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 2. Protein Modeling and Structure Based 15 Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed 15 regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based 15 3. Computational Biology: Introduction to 15 3. Computational Biology: Introduction to 15 3. Computational modeling in biology, Basic concepts of 15 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and 03 Validation in Industries 10 03 1. Introduction to Intellectual Property (IPR): Types 10		Algorithms naturies accurate alignments,		
similarly searches-BLAST, FASTA phytogenetic analysis and tree building methods, Motif searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 10 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge. 10		Algorithmis-pairwise sequence alignments, database		
analysis and tree building methods, Motri searches, Epitope prediction, Data mining tools and applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 03		similarity searches-BLASI, FASIA phylogenetic		
Epitope prediction, Data applications, Promoter and gene prediction, comparative analysis.152. Protein Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction.153. Computational Biology: Biology, Basic concepts of modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries03I.Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Riehts, Industrial Design, Traditional Knowledge.03		analysis and tree building methods, Motif searches,		
applications, Promoter and gene prediction, comparative analysis. 15 2. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignmentmethods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 03		Epitope prediction, Data mining tools and		
comparative analysis.152. Protein Modeling and Structure Based Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction.153. Computational Biology: mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/Bioethics and Biosafety / Quality Assurance and Validation in Industries 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.10		applications, Promoter and gene prediction,		
2. Protein Modeling and Structure Based 15 Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment-methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 10		comparative analysis.		
Approaches: Force field methods, energy, buried and exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 10 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge. 10		2. Protein Modeling and Structure Based	15	
exposed residues, Side chains and neighbors, Fixed regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 1. Introduction to Intellectual Property (IPR): Types 10 of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.		Approaches: Force field methods, energy, buried and		
methods regions, hydrogen bonds, Mapping properties onto surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignmentmethods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. 03 MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 10 1. Introduction to Intellectual Property (IPR): Types 10		exposed residues, Side chains and neighbors, Fixed		
surfaces, fitting monomers, RMS fit of conformers, Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction. 15 3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 1. Introduction to Intellectual Property (IPR): Types 10 of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.		regions, hydrogen bonds, Mapping properties onto		
Assigning secondary structures, Sequence alignment- methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction.153. Computational Biology: mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries03		surfaces, fitting monomers, RMS fit of conformers,		
methods, Evaluation, Scoring, Protein structure prediction, alignment algorithms, Sequence based methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction.153. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031.Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge,10		Assigning secondary structures, Sequence alignment-		
methodsprediction, alignmentalgorithms, Sequencebasedmethodsofstructureprediction, Predictionusinginversefolding, fold prediction, Significanceanalysis,ScoringScoringtechniques, Sequence-sequencescoring,Protein function prediction.153.ComputationalBiology:Introductiontomathematicalmodeling in biology, Basic concepts ofmodeling usingordinarydifferentialequation,Modelingpopulationgrowth, Logistic, Stochastic andDeterministicmodels, Modelingmodeling, Enzymaticreaction, Transcription and translation.mathematical modulity Assurance and0303MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and03Of IP: Patents, Trademarks, Copyright and RelatedRights, Industrial Design, Traditional Knowledge,10		methods, Evaluation, Scoring, Protein structure		
methods of structure prediction, Prediction using inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction.153. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge,10		prediction, alignment algorithms, Sequence based		
inverse folding, fold prediction, Significance analysis, Scoring techniques, Sequence-sequence scoring, Protein function prediction.153. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge,10		methods of structure prediction, Prediction using		
Scoring techniques, Sequence-sequence scoring, Protein function prediction.153. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge,10		inverse folding, fold prediction, Significance analysis,		
Protein function prediction.153. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.15MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge,10		Scoring techniques, Sequence-sequence scoring,		
3. Computational Biology: Introduction to mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation. MB4.2.3 E IPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 03 1. Introduction to Intellectual Property (IPR): Types 10 of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge. 10		Protein function prediction.	15	
mathematical modeling in biology, Basic concepts of modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.10		3. Computational Biology: Introduction to		
modeling using ordinary differential equation, Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031.Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.10		mathematical modeling in biology, Basic concepts of		
Modeling population growth, Logistic, Stochastic and Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.10		modeling using ordinary differential equation,		
Deterministic models, Modeling molecular processes in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.03		Modeling population growth, Logistic, Stochastic and		
in the cells-Ligand-receptor binding, Enzymatic reaction, Transcription and translation.Enzymatic not compared to the second translation.MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries 1. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.03		Deterministic models, Modeling molecular processes		
reaction, Transcription and translation.03MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.10		in the cells-Ligand-receptor binding, Enzymatic		
MB4.2.3 EIPR/ Bioethics and Biosafety / Quality Assurance and Validation in Industries031. Introduction to Intellectual Property (IPR): Types of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.10		reaction, Transcription and translation.		
Validation in Industries1. Introduction to Intellectual Property (IPR): Types10of IP: Patents, Trademarks, Copyright and Related10Rights, Industrial Design, Traditional Knowledge.	MB4.2.3 E	IPR/ Bioethics and Biosafety / Quality Assurance and		03
1. Introduction to Intellectual Property (IPR): Types10of IP: Patents, Trademarks, Copyright and RelatedRights, Industrial Design, Traditional Knowledge.		Validation in Industries		-
of IP: Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge.		1. Introduction to Intellectual Property (IPR): Types	10	
Rights, Industrial Design, Traditional Knowledge.		of IP: Patents, Trademarks, Copyright and Related		
		Rights, Industrial Design. Traditional Knowledge.		

	Geographical Indications, Protection of New GMOs,		
	International framework for the protection of IP		
	Invention in context of "prior art".		
	2. Patent, Filing and Infringement: Types of patents,	05	
	databases, Indian Patent Act 1970, Recent		
	Amendments, Patent application- types (Provisional		
	and complete specifications), forms and guidelines,		
	fee structure, time frames, Precautions before		
	patenting-disclosure/non-disclosure, World		
	Intellectual Property Organization (WIPO) Treaties,		
	Budapest Treaty, Patent Cooperation Treaty (PCT)		
	and Implications, Role of a Country Patent Office,		
	Procedure for filing a PCT application.		
	3. Bioethics and Biosafety: Introduction, Historical	10	
	Background, Introduction to Biological Safety		
	Cabinets, Primary Containment for Biohazards,		
	Recommended Biosafety level for Infectious Agents		
	and Infected Animals, Biosafety Levels of Specific		
	Microorganisms, Biosafety guidelines - Government		
	of India, Definition of genetically modified organisms		
	(GMOs), Roles of Institutional Biosafety Committee,		
	Review Committee on Genetic Modification (RCGM)		
	India, Genetic Engineering Appraisal Committee		
	(GEAC) India etc. for GMO applications in food and		
	agriculture, Environmental release of GMOs, Risk		
	Analysis, Risk Assessment, Risk management and		
	communication, Overview of National Regulations		
	and relevant International Agreements including		
	Cartagena Protocol.		
	4. Quality Assurance and Validation in Industries:	05	
	The concept of ISO Certification, Preparation of		
	Standard Operating procedure (SOP),		
	Validation protocols for methods in - Quality Control,		
	Process validation-The above should be discussed		
	within World Health Organization (WHO) Norms,		
	Exercises on preparation of SOPs, Operation and		
	validation for analytical methods.		
MB4.3.3 E	Omics Concepts in Biology		03
	1. Introduction to Genomics: Pre and Post Genomic	20	
	era, Major advancements in Genomic approaches,		
	Epigenetics and Metagenomics, Forward versus		
	reverse Genomics, Genome analysis-Genome editing		
	approaches and their applications, Gene expression		
	approaches and their applications. Next Generation		
	Sequencing (NGS)-Illumina (Solexa), Koche 454,		
	detection (SOLID) Ion Towart Technology at		
	Derellal sequencing Non-normal sequencing Sequence		
	ratatief sequencing, Nanopore sequencing, Sequence		

	analysis and their applications: Human Genetics and Human Genome Project Genomic insights into		
	evolution advantages of comparative genomic		
	analysis Analysis of microarray data	15	
	2 Drotoomics: Introduction types of protoomics	15	
	2. Froteonnes . Introduction, types of proteonnes		
	investigation and importance of proteonics foots of		
	DACE) Liquid abromatography Mass Spectrometry		
	(Janizora and Jatastara) Dratain and		
	(Ionizers, analyzers and detectors), Protein and		
	peptide microarray-based technology, Protein		
	identification by peptide mass fingerprinting.		
	Polymerase chain reaction (PCR)-directed protein in		
	situ arrays, Structural proteomics, Applications of		
	proteomics: Host-pathogen interaction, protein-	10	
	protein interaction, drug discovery.	10	
	3. Metabolomics: Basic concept of metabolomics,		
	Metabolic fingerprinting, and metabolic profiling,		
	Tools of metabolomics: Capillary electrophoresis,		
	Gas chromatography (GC), Electrochemical detectors,		
	Applications of Metabolomics in Biology.		02
MB4.4.2 E	Therapeutics: Vaccine Technology	15	02
	1. Basic principles of a vaccine action, a short history of	15	
	vaccination, Mechanism of vaccine action, Active and		
	passive immunization, General immunization		
	practices, Live, killed, attenuated, sub unit vaccines,		
	Toxold vaccines, Role and properties of adjuvants,		
	kecombinant DNA and protein based vaccines, plant-		
	vaccines, Reverse vaccinology, Pepude		
	Viral Vaccines, Conjugate vaccines, Licensed vaccines,		
	Live Debies vegeines Henstitic A and P vegeines)		
	Live, Rables vaccines, nepatitis A and D vaccines),		
	Bacterial Vaccine (Anumax Vaccines, Cholera		
	(Moloria Vaccine) Vaccinetian		
	(Marana Vaccine), Vaccination of		
	2 The vaccine industry Vaccine manufacturing	15	
	Evolution of adjuvants across the centuries Vaccine	15	
	additives and manufacturing residuals. Immunization		
	and World Health Organization (WHO) guidelines		
	Regulation and testing of vaccines Vaccine safely		
	Limitations of vaccines		
MB 4.5.2 E	Molecular Diagnostics: Sensors, Biosensors and other		02
	Diagnostic Techniques		
	1. Biosensors : Basic principles and operations, types of	07	
	biosensors and applications of biosensors. Point of	-	
	care medical diagnostic devices.		
	2. Medical Diagnostic Techniques: Biochemical,	12	
	analysis, DNA / RNA based analysis, etc., Necessity		

	for rapid and <i>in situ</i> medical analysis, Miniaturization		
	of medical diagnostic devices-Microfabrication		
	(Materials, processes, techniques for detection).	11	
	3. Microfluidics: Concept, Procedure, Applications and		
	Challenges, Integrated microfluidic devices: Lab-on-		
	a-chip, system-on-a-chip, micro-total analysis system		
	(μTAS) , Present research scenario and future		
	prospects.		
MB4.6.2 E	Stem cell and Regenerative Medicine		02
	1. Stem cell biology: Concepts of stem cells, Adult stem	15	
	cells, Embryonic stem cells, Induced pluripotent stem		
	cells and Hematopoetic stem cells, Cancer stem cells,		
	Stem cell molecular biology, Cultivation and		
	characterization of stem cells, Extracellular matrices		
	and signalling cues, Stem cell niches,		
	Mechanochemical regulation of cell behaviour,		
	Morphogenesis and tissue engineering.		
	2. Regenerative Medicine: Concepts of Regenerative	15	
	medicine, Three dimensional cell culture,		
	Biomaterials and tissue scaffolds, Bioprinting of		
	Organs and Tissues, Translational approaches of		
	Tissue Engineering, Regenerative therapy,		
	Regeneration of bone and cartilage, Molecular		
	therapy for regeneration, Application of Regenerative		
	medicine in Human health, Nanotechnology and		
	Regenerative medicine, Personalized therapy in		
	regenerative medicine.		
MB4.7.1 E	Fungal and Algal Biotechnology		01
	1. Fungal enzymes-Conversion of biomass to bioenergy	02	
	and high value products.		
	2. Fungal products in agricultural management and other	05	
	biological applications.		
	3. Fungal genetics- post genomic prospective.	03	
	4. Pharmacologically active compounds produced using	02	
	fungi.		
	5. Biotechnological applications of algae: Nutrient based	03	
	supplements-lipids and polyunsaturated fatty acids		
	(PUFA), protein rich cattle feed, phytosterols,		
	polysaccharides, pigments, antioxidants, biofuels.		
MB4.8.1 E	Physical Biology of Cell		01
	1. Concepts of orders and Magnitudes in terms of	05	
	biological molecules, Physical basis of Internal and		
	external cellular structures, Physical properties of		
	biopolymers, Cellular Thermodynamics.		
	2. Physics of Cell Membrane: membrane rheology,	~ -	
	electrical properties of cell membrane, action	05	
	potential, Osmosis and diffusion, Physics of		
	intracellular transport, cell movement and division,		

	 Physical basis of protein synthesis. 3. Reynolds number and its implication for sustenance of Microbial life, Viscoelastic properties of the cell, Molecular motors, Probabilistic view of cellular activity, Randomness in Biology, Biological specificity and kinetic proofreading, Tools and techniques of biophysics research. 	05	
MB4.9.1 E	Advanced Microscopy		01
	1. Principles of confocal fluorescence microscopy, resolution and point spread function, Light sources in fluorescence microscopy, The advanced fluorescence microscope optical train, pinhole and signal channel configurations, detectors, pixels and voxels, contrast, spatial sampling: temporal sampling: signal-to-noise ratio, multichannel images.	06	
	2. Multiphoton microscopy, Image deconvolution and quantification, Advanced fluorescence microscopy techniques: Foerster Resonance Energy Transfer (FRET) microscopy, Fluorescence Lifetime Imaging microscopy (FLIM) and Fluorescence Correlation Spectroscopy (FCS), Total internal Reflection Fluorescence (TIRF) microscopy, Breaking the diffraction barrier: Concept of optical superresolution, Stimulation Emission Depletion (STED) microscopy, Single molecule localization microscopy: Stochastic Optical Reconstruction Microscopy (STORM) and Photoactivation Localization Microscopy (PALM).	09	
MB4.10.1 E	Analytical and reasoning skills	15	01
	1. Statistical analysis of data.		
	2. Problems based biological experiments in genetics, immunology Environmental microbiology Molecular		
	biology. Waste water technology etc.		
MB4.11.1 E	Nanobiotechnology		01
	1. Introduction to Nanotechnology: Different types of		
	nanoparticles, their synthesis and characterization,	05	
	Biomimetics and nanotechnology.		
	2. Applications of Nanobiotechnology: Quantum dots, magnetic nanoparticles and plasmonic nanoparticles in biology and medicine, Carbon nanotubes and grapheme, Nanotechnology in agriculture – Fertilizer and pesticides.	10	