M.Sc. Botany Syllabus Credit System Course structure

M.Sc. I Botany: (Implemented from 2013-2014)

Semester I:
- BO 1.1 Cryptogamic Botany I- Algae and Fungi (60L)
- BO 1.2 Biochemistry and Plant Physiology (60L)
- BO 1.3 Genetics and Plant Breeding (60L)
- BO 1.4 Botanical Techniques (60L)
- BO 1.5 Practical based on BO 1.1 and BO 1.4
- BO 1.6 Practical based on BO 1.2 and BO 1.3

Semester II:
- BO 2.1 Cryptogamic Botany II- Bryophytes and Pteridophytes (60L)
- BO 2.2 Cell Biology and Evolution (60L)
- BO 2.3 Molecular Biology and Genetic Engineering (60L)
- BO 2.4 Plant Ecology and Phytogeography (60L)
- BO 2.5 Practical based on BO 2.1 and BO 2.2
- BO 2.6 Practical based on BO 2.3 and BO 2.4

M.Sc. II Botany (Implemented from 2014-2015)

Semester III:
- BO. 3.1. Spermatophytic Botany (60L)
- BO. 3.2. Developmental and Economic Botany (60L)
- BO. 3.3. Industrial Botany I (60L)
- BO. 3.4. Special Botany Paper (from BO 3.41 to BO. 3.50) (60L)
- BO 3.41. Advanced Mycology
- BO 3.42. Advanced Angiosperms
- BO 3.43. Advanced Physiology
- BO 3.44. Advanced Genetics and Molecular Biology
- BO 3.45. Advanced Biotechnology
- BO 3.46. Advanced Medicinal Botany
- BO 3.47. Advanced Environmental Botany
- BO 3.48. Advanced Seed Technology
- BO 3.49. Advanced Horticulture and Floriculture
- BO 3.50. Advanced Biodiversity

- BO 3.5. Practicals based on BO 3.1., BO. 3.2. and BO.3.3.
- BO. 3.6. Practicals based on Special Paper BO. 3.41 to BO 3.50

Semester IV:
- BO 4.1. Computational Botany (60L)
- BO 4.2. Plant Organism Interaction (60L)
M.Sc. Botany Credit System Course Structure and Examination Pattern

1. Each theory course of four credits of 60 Lectures
2. Examination pattern- internal examination 50 Marks and end semester University examination of 50 Marks
3. In each semester four theory and two practical courses
4. M.Sc. Botany syllabus is of 100 credits syllabus
5. Evaluation pattern under credit system will be as below

 A. Continuous Assessment (CA)- 50 Marks
 Written test (at least two) of 15 Marks each
 Assignment of maximum 5 marks
 Seminar/ Group Discussion/ Extension work/Report writing/ Study tour 5 marks
 An open book test 10 Marks

 B. End Semester Examination (ESE) 50 Marks
 The setting of question paper for ESE will be as below
 Total questions eight from which five have to solve and each question carries 10 marks.
 Any six questions with marks for sub questions may be – 4+3+3 or 5+3+2 or 4+4+2.
 Any two questions with marks for sub questions 5+5

 C. Practical Examination
 I. Internal marks 50 – outline of the distribution of the mark for various aspects for internal marks is as below-
 Journal – 10 Marks
 Viva voce– at the time of the practical 20 marks
 Group discussion of 5-6 students for testing understanding level of students 10 Marks
 Attendance – 5 Marks
 Additional practical work of interdisciplinary nature – 5 marks
 II. End Semester Practical Examination (ESE)- 50 Marks
 Certified journal would be compulsory to appear ESE practical examination

 D. Research Methodology and Summer Training: It will start in third semester it includes project report, review of literature and summer training report with certificate of completion. The students have to prepare techno-commercial case
study report of any four units mentioned in syllabus. It should be presented at the end of fourth semester practical examination.

E. **Passing System for Each Course**
A student has to obtain 40% marks in the combined examination of CA and ESE with minimum passing of 30% in both these separately. To pass the degree programme, students have to obtain minimum aggregate of 40% marks in each course.
M.Sc. II Botany Syllabus Credit Based System Draft

BO. 3.1. Spermatophytic Botany 60 L
Gymnosperms and Angiosperms (2 Credits each)

BO. 3.2. Developmental and Economic Botany 60 L
Developmental Botany (3 Credits)
Economic Botany (1 Credit)

BO. 3.3. Industrial Botany 60 L
Algal Technology (1 Credit)
Biofuel and Biopesticide (1 Credit)
Entrepreneurship and Management (1 Credit)
Fermentation Technology (1 Credit)

BO. 3.4. Special Botany Paper (from BO 4.41 to BO 3.50)

- BO 3.41. Advanced Mycology
- BO 3.42. Advanced Angiosperms
- BO 3.43. Advanced Physiology
- BO 3.44. Advanced Genetics and Molecular Biology
- BO 3.45. Advanced Biotechnology
- BO 3.46. Advanced Medicinal Botany
- BO 3.47. Advanced Environmental Botany
- BO 3.48. Advanced Seed Technology
- BO 3.49. Advanced Horticulture and Floriculture
- BO 3.50. Advanced Biodiversity

BO 3.5. Practicals based on BO 3.1., BO. 3.2. and BO.3.3.

BO. 3.6. Practicals based on Special Paper BO. 3.41 to BO 3.50
M.Sc. Botany Semester IV

BO 4.1. Computational Botany (4 Credit) 60 L
 Basic Biostatistics (1 Credit)
 Experimental Statistics (1 Credit)
 Bioinformatics (1 Credit)
 Biomathematics (1 Credit)

BO 4.2. Plant Organism Interaction (4 Credit) 60 L
 Plant –Plant Interactions (1 Credit)
 Herbivory and Carnivorous Plants (1 Credit)
 Symbiotic Associations (1 Credit)
 Pollination and Dispersal Biology (1 Credit)

BO 4.3. Industrial Botany II (4 Credit) 60 L
 Herbal Technology (1 Credit)
 Post Harvest Technology (1 Credit)
 Gardening and Forest Botany (1 Credit)
 Industrial Plant Tissue Culture (1 Credit)

BO 4.4. Plant Pathology (4 Credit) 60 L
 Introduction to Plant Pathology (1 Credit)
 Pathogenesis (1 Credit)
 Disease Development (1 Credit)
 Disease Management and Related Aspects (1 Credit)

BO 4.5. Practicals
 Practical based on BO 4.1, BO 4.2., BO 4.3. and BO 4.4.

BO 4.6. Research Methodology and Summer Training (4 Credits)
F. Project (2 Credits)
Projects will be allotted in third semester and students will submit project work having introduction, review of literature, well defined material and methods, discussion, results and conclusions, references

G. Research Methodology and Review of Literature (1 Credit)
Research methodology will be discussed and then review of literature and its presentation based on some advanced techniques in Botany

H. Summer Training and Preparation of Report on Techno-Commercial Case Study on any four aspects (1 Credit)
I) Summer training Report- Submission based on one summer training in research institutes/ laboratory/industry for at least one month with certificate from respective authority.

II) Techno-commercial case study of any four units from the following

Students will visit at least four units of the following to prepare report for submission
1. Biofertilizer unit
2. Mushroom cultivation unit
3. Greenhouse unit
4. Floriculture unit
5. Plant nursery unit
6. Garden designing and maintenance unit
7. Fruit processing unit
8. Bio-pesticide unit
9. Biomass briquette unit
10. Biofuel unit
11. Plant tissue culture industries
12. Farmhouse management
13. Pomoculture unit
14. Organic farming
15. Fresh vegetables and flower supply unit
16. Herbal product industry
17. Forest department unit
18. Medicinal plant garden
19. Effluent treatment plant
20. Solid waste management unit
BO 3.1 Spermatophytic Botany 60 L

Credit I - General Aspects and Fossil Gymnosperms (15L)

1. Outline classification of Spermatophyta as per Bessey (1911) and Engler (1936) 1L
2. Gymnosperm classification as per Sahni (1920), Chamberlain (1934), Raizada and Sahni (1960), Sporne (1965) and Bierhorst (1971) 2L
3. Affinities with pteridophytes and angiosperms 1L
4. Distribution of gymnosperms- Worldwide and in India. Economic aspects of gymnosperms. 3L
5. Pteridospermales w.r.t general characters- Lyngiopteris, Heterangium, Medullosa, Neuropteris, Glossopteris, and Caytonia. 4L
6. Cycadeoidales- General characters, structure of Cycadeoida and Williamsonia 1L
7. Pentoxylales- General characters, Pentoxylon, structure of secondary wood, male and female strobili, and contribution of Birbal Sahni 2L
8. Cordaitales – General characters, structure of Cordaites, and Cordaitanthus 1L

Credit II - Living Gymnosperms (15L)
General characters, affinities, morphology of sporophytes and gametophytes of living gymnosperm orders
1. Cycadales 3L
2. Ginkgoales 2L
3. Coniferals 5L
4. Gnetales, Ephedrales and Welwitschiales 5L

Credit III - Systematics and Classification of Angiosperms (15L)
1. Systematics: A key science, importance, relevance to conservation, taxonomic structure - taxonomic hierarchy, the species concept, categories and ranks, alpha and omega taxonomy, taxonomy as synthetic discipline. 5L
2. International Code of Botanical Nomenclature: Salient features-principles, important rules and recommendations, provisions for the governance of the code, appendices 3L

Credit IV - Taxonomic Aspects of Angiosperms (15L)

1. Morphological variations, systematic position, interrelationship, phylogeny and economic importance of following families: Magnoliaceae, Lauraceae, Piperaceae, Aristolochiaceae, Nymphaeaceae, Moraceae, Urticaceae, Casuarinaceae, Alismataceae, Hydrocharitaceae, Najadaceae, and Aponogetonaceae

2. Phytogeography: Phytogeographic regions of India, endemism, hotspots and hottest hotspots. Endemism in Western Ghats, plant explorations, invasions and introductions.

References:

BO 3.2 Developmental and Economic Botany (60 L)

Credit I - Process of Plant Development (15L)
1. Plant development- concept, definitions and unique features. 1L
2. Processes of development, cell growth, division and differentiation, competence, determination, commitment, specification, differentiation, redifferentiation and dedifferentiation. Polarity and symmetry, integration, organization of cells, tissues and tissue system to whole plant. Cell-cell interaction 6L
3. Factors for development- intrinsic and extrinsic 2L
4. Vegetative development – structure and organization of seed embryo 1L
5. Seed germination – Embryonal axis- meristems, establishment of seedling organ 1L
6. Phenomenon of development, meristems as dynamic centers of cell regeneration, organ development, primordium to organ, juvenility – characteristics, transition to adult phase. Coordinated development 4L

Credit II - Embryological Aspects of Development (15L)
1. Transition - vegetative to reproductive phase, morphological and histochemical changes in vegetative plant body 2L
2. Gametophyte development, stamen and microsporogenesis, male gametophyte or male germ unit development, carpel and megasporogenesis, female gametophyte or female germ unit formation 4L
3. Fertilization – Pollen tube growth and its path, its entry into embryo sac, gametic fusion, significance of double fertilization, abnormalities in fertilization 3L
4. Embryo development - Development of embryo in dicots and monocot, unclassified or abnormal embryos, unorganized or reduced embryo 3L
5. Polyembryony, apomictic phenomenon
Polyembryony – concept and classification of polyembryony, special cases and causes of polyembryony, apomixis- concept, categories- agamospermy and vegetative reproduction apospory, parthenogenesis 3L

Credit III - Physiology and Molecular Basis of Plant Development (15L)
1. Physiology of plant development – totipotency, light mediated development, hormonal control in development, light and hormonal signaling, cell lineages, cell fate mapping, positional informational techniques for studying development, specific gene expression 6L
2. Case study of organ culture, anther, pollen and protoplast culture and its role in understanding plant development 3L
3. Molecular basis of plant development - Embryogenesis and seedling development, root, shoot and leaf development, gene expression during transition to flowering and flower development molecular genetics of gametophytes development, expression of cell incompatibility 6L
Credit IV - Economic Botany (15L)

Source, method of cultivation and economic uses of
1. Cereals- rice, wheat, maize, barley, oat
2. Millets – sorghum, pear millet, finger millet
3. Legumes and nuts- gram, pigeon pea, soybean, garden pea, black gram, moth bean, cowpea, peanut, almonds, green almonds, cashewnut, walnut
4. Vegetables- sweet potato, beet, carrot, radish, turnip, potato, brinjal, onion, garlic, cabbage, cauliflower, tomato, jack fruit, cucurbits, bitter gourd
5. Fruits- mango, citrus, grapes, banana, guava, papaya, anjeer, pineapple, date, apple, pear, plum, peach, strawberry
6. Plant fibres- cotton, flax, sun-hemp, coir
7. Wood and Cork – babul, mulberry, willow, deodar, pinewood, red sandalwood, teak, salwood, veneers, plywood cork
8. Rubber and its products
9. Fatty oils- linseed oil, safflower oil, soybean oil, sunflower oil, sarson oil, castor oil, peanut oil
10. Essential oils- camphor oil, eucalyptus oil, jasmine oil, lavender oil, clove oil, rose oil, turpentine oil
11. (a)Sugar industry and its byproducts
 (b)Spices- Asafoetida, turmeric, ginger, cinnamon, saffron, cardamom, nutmeg

Tea and coffee industry

References:
1. P Maheshwari. Embrylogy of Angiosperms
2. Bhojwani and Bhatnagar. Embryology of Angiosperms
4. Cutter. Plant Anatomy
5. S N Pandy. Plant Anatomy
7. V Verma. Economic Botany
8. Bendre. Economic Botany
9. Hill. Economic Botany
10. Razdan. Plant Tissue Culture
11. Vasil. Plant Tissue Culture
12. P K Gupta. Elements of Biotechnology
13. Chawala. Introduction to Plant Biotechnology
15. Biology of Plants. American Society of Plant Physiologists Maryland, USA.
BO 3.3 Industrial Botany I (60 L)

Credit I- Algal and Bio-pesticide Technology (15L)

A. Algal Technology

1. Introduction to Algal Technology (2L)
 Resource potential of algae, commercial utility of algae- food and feed, pigments, pharmaceuticals and neutraceuticals, fine chemicals, fuel and biofertilizers, seaweeds extracts as biofertilizers, distribution of economically important algae in India

2. Algal Products (5L)
 SCP- *Spirulina* mass cultivation and its applications, biodiesel from algae, advantages over other sources of biodiesel, cultivation and extraction methods, liquid seaweed fertilizers – method of preparation and application

B. Biopesticide Technology (8L)
 Concept and significance of bio-pesticide; types of biopesticides and their applications,
 1. Herbal- Azadiractine, rotenone and pyrethrins
 2. Insect predators/parasites- Lady bird beetle, *Trichrograma*
 3. Fungal- *Trichoderma*, its isolation, mass multiplication and applications
 4. Bacterial- *Bacillus thurengensis*
 5. Viral- Nuclear Polyhydrosis Virus (NPV), Helicoverpa Nuclear Polyhydrosis Virus (HNPV)

Credit II - Biofuel Technology (15 L)

1. Environmental implications of fossil fuel, concept of biofuel, alternatives for fossil fuels – ethanol, vegetable oil, biodiesel (3L)

2. Bioethanol Technology (5L)
 Sources for bioethanol production- sugar crops, starch crops, cellulosic feed stock
 bioethanol production- sugar-to-ethanol process, starch-to-ethanol process, cellulose-to-ethanol process, bio-ethanol form lignocelluloses, distillation to dehydration process, technology applications of bioethanol, spark ignition engines, compression ignition engines, fuel cells, standardization of bioethanol
3. **Lipid Derived Biofuels**
Sources - oil seed crops, microalgae, animal fats, waste oils
Fuel productions- oil extractions, oil refining, transesterification, properties and use of lipid biofuels
Economy of lipid biofuels

4. **Bio-hydrogen** - Application and future prospects

5. **Methanogenesis** from agro industrial residues

Credit III - Fermentation Technology
(15L)

1. **Introduction**
History, fermentation process, fermenters- design and construction, basic functions, types of fermenters, operation, aseptic operation and use of computer in fermenters, maintenance, types of fermentation process, batch fermentation, fed-batch fermentation, continuous fermentation, scale up of fermentations, industrial processes- upstream and down-stream processes, strain improvement of microbes

2. **Alcohol and Beverage Industry**
Sources and methods of production of alcohol, beer and wine

3. **Organic Acid Industry**
Sources and methods of production of vinegar, and citric acid

4. **Antibiotic Industry**
Sources and methods of production of Penicillin, Cephalosporins, and Griseofulvins

5. **Food Industry**
SCP - advantages and disadvantages, production of yeast biomass, production of mycoproteins, traditional fungal foods (Shoyu, Miso, Sake, Tempeh), production of Button mushroom, (Agaricus) Paddy straw mushroom (Volvariella) and Dhingri mushroom (Pleurotus)

Credit IV - Entrepreneurship and Management
(15 L)

A. **Entrepreneurship** (8L)

 1. **Entrepreneur:** Concept, characteristics of entrepreneur, types and functions of entrepreneur, difference between entrepreneur and a manager.
2. **Entrepreneurship Development Programmes (EDPs)** - Need, objectives, course contents and curriculum, phases and evaluation of EDPs, **Project Identification and Selection (PIS)** - Meaning of project and report, project identification, project selection, contents of project reports, preparation of project report. 4L

3. **Institutional Finance to Entrepreneurs** - Commercial banks, other financial institutions- IDBI, IFSI, ICKI, LIC, UTI, SFC’s SIDBI, and EXM Bank
 Institutional Support to Entrepreneurs - Need of institutional support, institutional support to small entrepreneurs- NSIC, SIDCO, SSIB, SSIDC, SISI’s, DICS, Industrial Estates, NABARD 2L

B. Management (7 L)

1. **The Business – Its Nature and Scope** 3L
 Meaning, characteristics, objectives and scope of business, difference between business and profession, interrelationship between industry, commerce and trade

2. **Fundamentals of Management** 4L
 Meaning, characteristics, difference between management and administration, management process, working capital management, inventory management, human resource management, production and operation management, marketing management. Accounting- need, meaning, objectives, journal, ledger, trial balance, final accounts- profits and loss accounts, balance sheet

References

1. Biofuel Technologies- Recent Developments, Gupta, Vijay Kumar, Tuohy, Maria G. (Eds) Springer publication
2. Biofuel technology Handbook, Dominik Rutz, Rainer Janseen, WIP Renewable Energies, Germany
3. Biopesticides for sustainable agriculture: prospects and constraints, Editor(s): Nutan Kaushik
4. Entrepreneur Developments, S. S. Khanka, S. Chand., 2005
5. A Text Book of Microbiology, Dube and Maheshwari
6. A Text Book of Biotechnology. R C Dube
7. Insecticide control act 1985 Gazette of India
8. Fertilizer control act 1985 Gazette of India
BO 3.4 Optional Paper- Any One Special Paper from BO 3.41 to BO 3.50

BO 3.41 Advanced Mycology and Plant Pathology (Special Paper) (60 L)

Credit I - Fungi as Organism (15L)
1. Fungi and their significance 1L
2. Relationship of fungi with plants and animals 1L
3. Milestones in mycological and pathological studies 2L
4. Fungal cell- structure and composition 1L
5. Physiology of fungal growth 2L
6. Ecological groups of Fungi 1L
7. Fungal spores 1L
8. Outline classification of fungi-
 E. A. Bessey System (1950)
 Alexopoulos System (1962), L. E. Hawkers System (1966),
 Alexopoulos and Mims System (1979),
 Webster and Weber System (2007) 3L
9. Molecular method of fungal taxonomy 1L
10. Fungi as model organism for genetical studies 2L

Credit II -Allied Fungi (15L)
(With respect to general characters, classification, structure, variation and importance)
1. **Myxomycota**- Acrasiomycetes, Protosteliomycetes, Dictyosteliomycetes,
 Myxomycetes. 6L
2. **Plasmodiophoromycota** 2L
3. **Straminipila**- Hyphochytridiomycota, Labyrinthulomycota, and Oomycota 7L

Credit III - True Fungi (15L)
(With respect to general characters, classification, structural variation and pathological
importance, if any)
1. **Chytridiomycota**- Chytridiomycetes 1L
2. **Zygomycota**- Zygomycetes, and Trichomycetes 2L
3. **Ascomycota** - Archiascomycetes, Hemiascomycetes, Plectomycetes, Pyrenomycetes, Loculoascomycetes

4. **Basidiomycota** - Hymenomycetes - Agarics and Polypores
 - Homobasidiomycetes - Gasteromycetes
 - Heterobasidiomycetes - Auricularials
 - Dacrymycetales, Tremellales

5. **Teliomycetes** - Rust and Smut fungi

Credit IV - Anamorphic Fungi and Allied Aspects (15L)

1. **Deuteromycota** - Classification, structural variations and importance

2. **Fungal Association** - Lichens, mycorrhizae

3. **Fungal ecology** - Colonization strategies among fungi

4. **Ecological services of fungi** - Bioremediation, biohydrometallurgy, microbiological sensors

5. **Fungi as Human pathogens** - Dermatomycosis (*Tinea*), intermediate and systemic mycosis, its symptoms, clinical aspects and control measures

Practicals Based on Advanced Mycology and Plant Pathology

1. Preparation of culture medium for fungi - PDA medium, CDA medium, Sabourard’s medium

2. Isolation of aquatic and soil fungi by baiting method

3. Isolation of fungi from rhizosphere and non-rhizosphere soil

4. Isolation of plant pathogenic fungi from root, stem and fruits

5. Study of seed borne fungi of any six crops

6. Study of fungal disease - (any one from each) rots, Downy mildew, wart, ergot, white rust, Anthracnose, rust, smut, leaf spot w.r.t. symptoms, causal organism and control measures

7. Study of fungi from the following groups -
 - Myxomycetes - any four
 - Chytridiomycetes - any two
 - Oomycetes - any four
Pyrenomycetes- any four
Loculoascomycetes- any two
Discomycetes- any four
Teliomycetes – any eight
Gasteromycetes- any four
Hymenomycetes- any six
Deuteromycetes- any six

8. Preparation of stains and mounting media for study of fungi 1P

Note:
1. Compulsory visit to Western Ghats for collection and observation of fungi (at least for three days).
2. Visit to any one Mycology Institute/ Laboratory.

References:
BO 3.42 Advanced Angiosperms (60 L)

Credit I- Modern Trends in Angiosperm Taxonomy (15L)

1. Embryology in relation to taxonomy: Embryological characters of taxonomic importance, utilization of embryological data in solving taxonomic problems at different levels.

3. Palynotaxonomy: Pollen morphology-Polarity, symmetry, NPC of pollen, exine stratification, excrescences, L/O pattern, palynogram; pollen characters of taxonomic importance.

Credit II-Phytogeography, Ecology, Genetics and Taxonomy (15L)

1. Phytogeography and speciation; adaptations, ecological variations, genetic variations and plant systematics.

2. Numerical Taxonomy: Phenetic methods in taxonomy [Taxometrics]: Principles, construction of taxonomic groups, OUTs, unit characters, character coding, measurement of resemblances, cluster analysis, phenons and ranks, discrimination, nomenclature and numerical taxonomy, applications, merits and demerits. Cladistics and cladogram, parsimony analysis, cladistics and classification.

3. Cytotaxonomy: Chromosome number, (basic, haploid and diploid chromosome number)polyploidy, aneuploidy, chromosome morphology, karyotype, chromosome banding, meiotic analysis and plant systematics, scope and limitations.

Credit III-Chemotaxonomy and Allied Aspects (15 L)

2. **Ultrastructural Systematics**: SEM and TEM studies and plant systematics; SEM and plant surface structure, TEM and dilated cisterneae of endoplasmic reticulum and sieve element, plastids, applications of data in the classification of higher taxa.

3. **Molecular Systematics**: Molecular diagnostic tools, restriction fragment length polymorphism (RFLPs), Random Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction (PCR) analysis, specific applications of RAPD in molecular systematics. Molecular data and systematic position of Hydatellaceae.

Credit IV- Taxonomic Aspects *(15 L)*

Morphological, variations, systematic position, interrelationships, phylogeny and economic importance of following families: Dilleniaceae, Tiliaceae, Bigoniaceae, Passifloraceae, Salicaceae, Gentianaceae, Cucurbitaceae, Boraginaceae, Plantaginaceae, Lobeliaceae, Asteraceae, Costaceae, Pontederiaceae, Dioscoriaceae, Arecaeae, Pandanaceae, and Orchidaceae.

References:

• Hutchison, J. 1959. Families of flowering plants.
BO 3.6 Practicals Based on Special Paper BO 3.42 -Advanced Angiosperms

1. Microtome technique for study of embryological characters (3P)
2. Study of wood character, vessels, storied and nonstoried wood (3P)
3. Pollen preparations by Acetolysis method (Semi-permanent) and study of different pollen morphotypes. (2P)
3. Study of chromosomes, chromosome banding and Karyotype analysis (Any two species) (3P)
4. Analyses and interpretation of data of any two species fortaxonomic characterization (4P)
 (a) flavonoid data based on PC/TLC
 (b) Seed protein by SDS-PAGE and interpretation of protein profiles
5. Study of plant surface attributes with the help of SEM photographs and sieve tube plastid and dilated cisternae of endoplasmic reticulum with the help of TEM photographs (1P)
6-13. Descriptions, Sketching, classification and identification of families: (7P)
 Gentianaceae, Cuscutaceae, Boraginaceae, Plantaginaceae, Lentibulariaceae, Lobeliaceae, Asteraceae, Costaceae, Pontederiaceae, Dioscoriaceae, Burmanniaceae, Orchidaceae and identification of wild and cultivated plants represented in local flora.
14. Two local excursions to study vegetation, ecology and flowering pattern of the region. (2P)

Note:
Student should submit minimum 10 conventional herbarium specimens and 50 electronic herbarium specimens. Minimum 5 permanent slides of wood anatomy and 5 slides of floral anatomy (microtomy cut sections of flower specimens).
Credit- I Plant Nutrition (15L)

Soil type and properties, absorption and assimilation of mineral nutrients and transport of water and solutes. 3L
Role of microbes in availability of mineral nutrients. 2L
Chemical fertilizers, conventional and recent methods of applications 1L
Transporter, energizing transporter, role of ATPase and PPase 3L
Water potential and factor influencing transport of water 3L
Transpiration ratio and water conservation strategies in plants 3L

Credit- II Photosynthesis (15L)

Photosynthetic ETS in pro and eukaryotic organism 03
Chlorophyll fluorescence kinetics and determination of PSI and PSII efficiency 03
Light saturation curve, CO$_2$ response curve and CO$_2$ compensation point 02
Evolution of RUBISCO and PEPcase 01
C$_3$ and C$_4$ Intermediate 01
CO$_2$ concentrating mechanism and increase of CO$_2$ fixation efficiency, Signal cell C$_4$ Photosynthesis 03
CAM pathway in desert and aquatic plants 01
Partitioning of photosynthetic assimilate and feedback regulation of photosynthesis 01

Credit- III Respiration (15L)

The role of respiration in plant carbon balance

Diverse nature of mitochondrial electron transport system 3L
Comparative account of normal respiration and cyanide resistance respiration, significance of cyanide resistance respiration, alternate oxidase and overall regulation of respiration 3L
Respiration in response to anoxia, acidosis metabolism during fruit development and seed
Biosynthesis of secondary metabolites, role of secondary metabolites in plants, plant growth regulator

Credit- IV Stress Physiology and Allied Aspects (15L)

Developmental and physiological mechanism that protect plant against environmental extremes/stress
Role of natural and synthetic growth regulators in growth and development.
Crop growth, relative growth rate and net assimilation rate.
Metabolism and allocation of resource during vegetative and reproductive growth
Source and sink relationship
Physiology of flowering, circadian Rhythms, photoperiodism, vernalisation
Post harvest physiology of fruits, seed maturation and dormancy.
Physiological traits for improvement of crop.

References:

1. Induction of deficiency symptoms and growth analysis in crop plants
2. Determination of activity of nitrate reductase and assimilation of nitrogen
3. Study of transpiration and stomatal physiology under abiotic stress
4. Determination of rate of photosynthesis using IRGA/Oxygen measurement system
5. Study of effect of abiotic factors on activity of RuBisco and PEPcase enzyme
6. Separation and identification of stress related proteins
7. Demonstration of study of respiration under stress condition using oxygen measurement system
8. Effects of auxins and cytokinins or gibberellins on growth/enzyme activity
9. Effect of nutrient constituents/ growth regulators / environmental factors on in vitro growth and differentiation
10. Development of biotic and abiotic stress tolerance using in vitro techniques
11. Screening of cultivars for biotic and abiotic stress tolerance using in vitro technique
12. Comparative physiological studies of non transgenic and transgenic (Bt. Brinjal) plant
13. Determination of secondary metabolite
14. Estimation of Na/K/Mg/Ca and P
15. Effect of mycorrhizae on phosphorus assimilation
16. Effect of biofertilizers on crop growth

Note: Visit to advanced plant physiology laboratory and submission of report
M.Sc. Botany Semester III

BO 3.44 Advanced Genetics and Molecular Biology

Credit I- Genetics

1. Chromosome Packaging

Genome size and evolutionary complexity, structure of the prokaryotic chromosome, structure of eukaryotic chromosomes, structure of nucleosome, arrangement of chromatin fibers in a chromosome, polytene chromosomes, lampbrush chromosomes, satellite chromosome, d chromosomes, molecular structure of centromere and telomere

2. Transposable Elements

General characteristics, mechanisms of transpositions, mutagenic effects of transposition, structure of prokaryotic transposable elements – insertion sequences, Tn 10 transposon in bacteria, eukaryotic transposable elements – Ac and Ds elements in maize, Copia transposable element in Drosophila

Credit II- Molecular Biology

1. Molecular Biology of Plasmids

Plasmid DNA Replication, interactions between plasmid and host, DNA replication processes, control of copy number, partitioning incompatibility, conjugal Functions, pilus production, transfer DNA replication, broad host range plasmids

2. Molecular Biology of T4 Bacteriophage

Morphology and composition, experimental methods used to study phage infection, one-step growth experiment, single burst experiment, premature lysis experiment, genetic organization of T4, types of mutations observed in the T4 genome, structure of rII locus, molecular biology of T4 phage infection, initial stages of infection, regulation of infection, morphogenesis and maturation

Credit III- Genetics and Evolution

1. Genetics of Wheat

Introduction, genetics of the wheat plant, wheat gluten proteins, classification and nomenclature, isolation, characterization, and expression of gluten protein genes, structure and evolution of high molecular weight subunit genes, structure and evolution of low molecular weight subunit and gliadin genes, gene expression and regulatory sequences, gene silencing

2. Population Genetics and Evolution

Hardy Weinberg principle, allele frequencies and genotype frequencies, allele frequency calculations, enzyme polymorphisms, DNA polymorphisms, systems of mating, random mating and the Hardy-Weinberg principle, implications of the Hardy-Weinberg principle, DNA typing and population substructure
Credit IV-Genetical and Molecular Analysis

1. **Site-Specific Recombination**
 Introduction, double site-specific recombination, phage lambda integration, circular chromosome segregation, inversion systems, integrons, transposons: single site-specific recombination, phage Mu transposition

2. **Molecular Analysis of Inherited Diseases**
 Introduction, direct detection of gene mutation, detection of deletions, duplications and inversions, expansion mutations, point mutations, indirect diagnosis with linked genetic markers.

3. **Genome Sequencing Projects**
 Genomic mapping, genetic mapping, single-nucleotide polymorphisms, VNTRs, microsatellites, physical mapping, restriction maps, radiation hybrid maps, nucleotide sequencing, automated DNA sequencing, genome sequencing

References:
4. Genetics – A conceptual approach – Benjamin Pierce

BO 3.6 Practical based on Special Paper (24 Practicals)

1. Isolation and SDS PAGE separation of wheat proteins
2. Study of polytene chromosome
3. C-Metaphase and the morphology of chromosomes
4. Study of Effects of transposable elements in suitable plant material
5. Culturing of suitable bacteriophage and observation on plaque morphology
6. Computational analysis of transposable element sequences
7. Determination of allelic frequencies of suitable morphological/biochemical trait
8. Genome analysis in wheat 2P
9. Germplasm collection, cataloging, data storage and retrieval 2P
10. Determination of chiasma frequency in the given material 1P
11. To search literature of different organisms and genes from NCBI 1P
12. Use of various tools to retrieve information available from NCBI 1P
13. To retrieve gene and protein sequences of various organisms from NCBI 1P
14. To locate gene(s) on chromosomes for a given disease/disorder 1P
15. Separation of isozymes by using native gel electrophoresis 1P
16. Isolation of nuclei, separation and identification of histones by SDS-PAGE 2P
17. Separation of chloroplast proteins on SDS-PAGE 2P
18. Chromosomal banding: O banding in *Allium cepa* 2P
19. Genetic problems on mapping of the genes in higher organisms 2P

Note:
1. Practical No.1 is mandatory.
2. Select any 15 practicals from practical no.2 to 15.
3. Select any 3 practicals from practical no. 16 to 19.
4. Visit to a reputed molecular biology laboratory and submission of report is mandatory.
Credit I- Fundamental Biotechnology (15L)
1. Concept of plant biotechnology
 (Plasmid vectors, lambda (λ) phage vectors, cosmids and expression vectors),
 selection of vectors
3. *In vitro* gene cloning – polymerase chain reaction (PCR), methods of PCR,
 applications of PCR
4. DNA polymorphism, Use of various enzymes in recombinant DNA technology
5. Techniques in restriction mapping, Southern, Northern, Western, Blotting techniques
 and applications
6. DNA libraries, chromosome walking and jumping, DNA sequencing,
 Gene synthesis machines, Molecular markers SNPs, ISSR, SCAR

Credit II- Gene Expression (15L)
1. Techniques used to study gene expression at transcription level:
 • Northern hybridization,
 • reverse Northern hybridization,
 • differential screening and subtractive hybridization,
 • differential display of mRNA, ESTs, SAGE, cDNA-AFLP,
 • DNA microarrays
2. Gene-tagging and plasmid rescue, promoter and enhancer traps
3. Alterations in gene expression: Site-directed mutagenesis, insertional mutagenesis, knock
 out mutants, targeting induced local lesions in genomes (TILLING)
4. Gene silencing - Gene inhibition at RNA level - antisense, co-suppression, miRNAs and
 siRNAs, silencing mechanisms

Credit III- Agriculture Biotechnology (15 L)
1. Herbicide resistance (phosphinothricine glyphosate, Sulphonyl urea, astrazin)
2. Insect resistance (Bt gene, non Bt like protease inhibitor)
3. Virus resistance (Coat protein mediated nucleocapsid gene)
4. Disease resistance (Chitinase, 1-3 beta glucanase, RIP)
5. Nematode resistance
6. Abiotic stress tolerance (Salt tolerant and drought stress resistance)
7. Post-harvest losses (Long shelf life of fruits and flowers)
Credit IV – Plant Tissue Culture for Secondary Metabolite Production (15 L)

1. Scope and applications of in vitro secondary metabolite production. 1L
2. Types of culture systems used for secondary metabolite production 3L
3. Improving secondary metabolite production in culture 5L
 a. Regulation of secondary metabolite pathways and compartmentalization
 b. Manipulation of nutrient media, precursor additions
 c. Immobilization of cells
 d. Elicitation using biotic and abiotic elicitors
 e. Biotransformation
 f. Screening and selection of high secondary metabolite producing cell lines.
4. Bioreactors- Types of bioreactors, growth, product analysis and scaling up 3L
5. Pathway engineering - Enhancing secondary metabolite production through genetic manipulation of biosynthetic pathways 3L

References:

BO 3.6 Practicals based on BO 3.45 Advanced Plant Biotechnology

1. DIG – labelling of DNA fragment for use as probe in Southern hybridization 3P
2. Restriction digestion and electrophoresis of plant genomic DNA, Southern blotting and Southernhybridization 3P
3. RNA isolation from plant tissues and electrophoresis of RNA 3P
4. RT-PCR and comparing gene expression in two treatments 3P
5. Immobilization of cells and comparative analysis of secondary metabolite production in immobilized and suspension cultures. 3P
6. Manipulating cultures using elicitors for enhanced production of secondary metaboltiles 3P
7. Use of PCR-based molecular markers- RAPDs, ISSR markers for scoring polymorphism. Construction of phylogenetic trees using given data 2P
8. Making linkage maps from given data using mapmaking software. QTL analysis using given data 2P
9. Separation and detection of specific proteins using Western blotting 3P

Note-
1. Compulsory visit to Plant Biotechnology Laboratory/Institute/Agriculture University and submission of report during practical examination.
2. Visit to Plant tissue culture unit and genetic engineering laboratory for knowing advanced techniques in Plant Biotechnology. Preparation of report with photographs of important instruments with descriptions.
BO 3.46 Advanced Medicinal Botany

Credit I- General Pharmacognosy(15L)

1. History, definition, scope of Pharmacognosy 1L
2. Traditional and alternative system of medicine 1L
3. Classification of crude drugs 2L
4. Scheme for pharmacognostic studies of crude drugs 1L
5. Cultivation, collection and processing of herbal drugs 3L
6. Cultivation and utilization of medicinal and aromatic plants in India 3L
7. Indian trade in medicinal and aromatic plants 1L
8. Case study of any two Ayurvedic medicinal products industries from India 3L

CreditII- Analytical Pharmacognosy(15L)

1. Drug adulteration 1L
2. Drug evaluation –Morphological, microscopical, chemical, physical and biological methods 6L
3. Quality control of herbal drugs 1L
4. Case study of any two Ayurvedic drugs by chemical, physical and biological methods 2L
5. Plant tissue culture for phytopharmaceuticals 1L
6. Biosynthesis of glycosides and alkaloids 2L
7. Biogenesis of phytopharmaceuticals 2L

Credit III- Plant Drugs(15L)

Detailed pharmacognostic study of the following drugs w.r.t. source, cultivation, collection, macroscopic characters, and application - Isabgol, Indian Gum, Honey, Indian Senna, Aloes, Digitalis, Dioscorea, SafedMusli, Shatavari, Liquorice, Brahmi, Henna, Arjuna, Amla, Karanj, Neem, Camphor, Eucalyptus, Peppermint, Garlic, Tulsi, Clove, Hops, Papain, Belladona, Ashwagandha, Vinca, Vasaka, Turmeric, Tobacco, Santalum, etc. 15L

Credit IV- Industrial Aspects(15L)

1. Phytopharmaceuticals prospects 2L
2. Marine drugs 2L
3. Nutraceuticals and cosmeceuticals 4L
4. Ayurvedic pharmacy- principles, formulations, Ayurvedic profile of drugs- Shatavari, Neem, punarnava, guggul, bhringraj, amla, tulsi, arjuna, behra, haritaki, ginger, curcuma, gulvel , hirda, Aloe 2L
5. Natural pesticides- Pyrethrum, neem, Deris, tobacco 2L
6. Immunomodulatory medicinal plants 1L
7. Natural excipients 2L
References:

1. Pharmacognosy. Tylor and Brady
2. Pharmacognosy. Wallis
3. Pharmacognosy. Trees and Evans
4. Pharmacognosy. Kokate, Gokhale, and Purohit
5. Economic Botany. Hill
8. Medicinal Plants of India and Pakistan. Kirtikar and Basu
9. Medicinal Plants. S K Jain
10. Phytochemistry of Plants. McDaniels
11. Plant Physiology. Salisbury and Ross

Practicals based on BO 3.46 Advanced Medicinal Botany

1. Identification of drug with the help of organoleptic and microscopic evaluation techniques 2P
2. Percentage extractives and fluorescence analysis of drugs 2P
3. Determination of ash values of drugs 2P
4. Histochemical studies of drugs 2P
5. Chemotaxonomic studies of drug belonging to any five families 4P
6. Biological activity and chemical constituents of any two drugs 2P
7. Estimation of alkaloids from suitable medicinal plants 1P
8. Estimation of glycosides from suitable medicinal plants 1P
9. Extraction of essential oils from suitable medicinal plants 2P
10. Estimation of oleoresin from suitable medicinal plants 1P
11. Preparation of herbal foods 2P
12. Preparation of herbal cosmetics 2P
13. Visit to any two pharmaceutical industries and submission of report 1P
14. Field visit to study ethnobotany and preparation of report 1P

Note:

1. At least one short and one long study tour be arranged for studying medicinal plants and to explore ethnobotanical data. Students must submit the tour report and ethnobotanical data during practical examination.

2. Student must carry out detailed pharmacognostic investigation of at least one drug and should submit a report at the time of practical examination as a project.
BO 3.47 Advanced Environmental Botany

Credit I-Environmental Botany and Conservation Biology (15L)

1. Definition, scope and importance of environmental studies, interdisciplinary nature of Environmental Science, principles background and scope of Environmental Science, environmental science and technology, media and people, decision making and applications of environmental science. 4L

2. The environment: Physical environment; biotic environment; biotic and abiotic interactions. 1L

3. Environmental Botany:
 Present concern: Conservation of genetic resources, gene pools land races, global warming and costal ecosystems. Depletion of forest cover, threats to mangrooves. Urbanization and plant cover. 4L

4. Environmental Ethics:
 Nature and origin of environmental ethics, ecological consciousness, views of developed and developing countries, environment community and equity, integrating ethical values and knowledge, self centered development and environment. 1L

5. Global and national environmental issues
 Social issues and environment, ozone depletion, greenhouse effect, acid rain, global warming, carbon credits, climate change, deforestation, biodiversity loss, desertification. 3L

6. Modern tools in the study of environmental science – GIS, GPS, RS Data, aerial photography, and its data interpretations 2L

Credit II-Environmental Impact Assessment (15L)

1. EIA: Concept, scope, process and necessity with case studies such as Thermal, Irrigation project, mining etc. EMP. 2L

2. Human impact on environment and its consequences- Agriculture societies, industrial societies, impact of cultural change on environment, population explosion, degradation of natural resources 3L

3. Types and sources of environmental pollution, physical, chemical and biological parameters used in monitoring of air, water and soil pollution 3L

4. Radiation pollution -Types, sources, measurement and detection of radiation intensity, effects of radioactive pollution, control of radiation pollution 2L

5. Thermal pollution - Definition; sources, effects of thermal pollution; control of thermal pollution 1L

6. Fertilizers, pesticides and their impact on environment 1L
7. Bio-indicators of environmental degradation- Concept of Bioindicators, bio-indicators as plants, animals, role of bioindicators in pollution control

8. Threats to the earth: Greenhouse gases and possible effect of global warming

Credit III-Environmental Biotechnology (15L)
1. Significance of Environmental Biotechnology in agriculture, food security, climate change mitigation, and Environmental Biotechnology for handling pollution
2. Waste treatment: biological methods used in treatment of sewage
3. Sludge treatment and its application
4. Phytoremediation: Concept, process and application in decontaminating soils and water, phyt-extraction, phyto-filtration, phyto-accumulation in remediation of wastewater and degraded soils with examples.
5. Genetic improvement for bioremediation
6. Designing bioremediation protocol- Treatments to heavy metal containing wastes

Credit IV-Conservation Biology, Sustainable Development and Biodiversity (15L)

Conservation Biology and Sustainable Development:
1. In situ and ex situ conservation strategies, sustainability of wetland and forests, sustainable agriculture; urban planning and sustainable cities
2. Reviews of various national and international obligations in the environmental protection such as CITIES, RAMSAR, Montreal, Basal, CBD, Koyoto protocol, CDM, carbon sequestration, clean technology and its importance, concept and role of green belt
3. Environmental legislation in India: Environmental (Protection) Act, Air and water pollution acts
4. Renewable energy resources: solar energy, geothermal energy, wind energy, wave energy, tidal energy, hydroelectric energy and energy from biomass, Nuclear fuel

Biodiversity:
1. Biodiversity: Concept and definitions, types of biodiversity- genetic diversity, species diversity, ecosystem diversity
2. Major ecosystems of the world, phytogeographic regions of world (vegetation belts), Biogeographical zones of India, flora and fauna of India

4. Value and use of biodiversity- Ethical, aesthetic, food, fodder, ornamentals, medicinal, economical and socio-ecological approach etc.

References:
4. Kormondy 1996, Concept of ecology
5. Kumar H.D. Concept of ecology
11. Das. Concept of ecology
BO 3.6 Practicals based on BO 3.47 Advanced Environmental Botany

1. Studying pollution indicator plants in terms of morphology and anatomy 2P
2. Comparison of stomatal index of any six plants from polluted and non polluted areas 2P
3. Comparison of pollen fertility of any six plants from polluted and non polluted areas 2P
4. Studying the effect of radiation on plants 2P
5. Effect of chemical mutagen on plant growth 2P
6. Estimation of CO₂, DO and BOD of the water samples 2P
7. Estimation of chlorides and alkalinity of the water sample 2P
8. Exercise on carbon sequestration 2P
9. Studying plant community using transect and quadrat method 2P
10. Interpretation of any six aerial photographs of vegetation 2P
11. Treatment of wastes by microbes and plants 2P

Note:

1. Visit to the site of social forestry/agroforestry
2. Visit to water treatment plant and polluted water body and preparation of report
BO 3.48 Advanced Seed Technology (60 Lectures)

Credit I- Introduction to Seed Technology (15L)

1. **Introduction:**
 - Definition, difference between seed and grain
 - Seed quality characteristics
 - Important seed industries in India.

2. **Seed Development, Structure and Chemical Composition:**
 - Floral biology and mode of pollination (autogamy and allogamy)
 - Development and structure of megasporangium, microsporangium, male and female gametophyte
 - Fertilization and embryo development
 - Seed structure (embryo, endosperm and seed coat)
 - Chemical composition of seed (carbohydrates, proteins, oils, fats and other)

3. **Seed Dormancy:**
 - Definition
 - Types of dormancy
 - Causes of seed dormancy
 - Methods of breaking dormancy

4. **Seed Germination:**
 - Definition
 - Types of germination
 - Factors affecting seed germination
 - Seed vigour and seed ageing
 - Seed viability, orthodox and recalcitrant seed

Credit II- Seed Production (15L)

1. **Seed Production in Field Crops:**
 - Classes of seed
 - General principles of seed production
 - Maintenance of breeders seed in self and cross pollinated crops
 - Seed production techniques in hybrids (use of male sterility, self incompatability and gametocides)
 - Procedure of seed production in cotton and maize (Land requirements, isolation requirements, brief cultural practices, plant protection, rouging, harvesting and threshing)
 - Seed village concept
2. Vegetable Seed Production: 4 L
 a. Production and maintenance of nucleus, breeders and foundation seeds in self and cross
 pollinated vegetable crops
 b. Brief account of seed production of tomato, brinjal, chilly, okra, onion, cucurbitaceous,
 fenugreek/coriander, collection, multiplication and storage of clones in potato, true
 potato seed (TPS) production.

3. Seed Processing: 6 L
 a. Objectives of seed processing
 b. General layout of seed processing plants
 c. Pre-cleaners - construction and working
 d. Preparation of seed for processing - scalper - debearder and huller - construction and
 working
 e. Seed drying - optimum temperature range, dryers - construction and working
 f. Air screen cleaner - construction and working
 g. Specific gravity separator - principles of operation, construction and working
 h. Seed treatment - importance - seed treating equipment - slurry treater - principles and
 working
 i. Packaging and handling of seeds - weighing platforms - scales - bagging machine - lifting
 arrangement - screw conveyor, bucket elevator and belt conveyor - construction and
 working

Credit III- Seed Testing and Allied Aspects (15L)

1. Seed Testing: 4 L
 a. Objectives
 b. ISTA
 c. Seed sampling
 d. Sampling, dividing and mixing equipments
 e. Procedure of sampling, (kinds- primary, composite, submitted and working)
 f. Types of seed samples (service, official and certification sample)

2. Genetic purity and quality testing- 5 L
 a. GOT (grow out test).
 b. Germination test: preparation, apparatus, germination material, Methods-paper, sand
 and soil, evaluation-normal, abnormal seedlings and ungerminated seeds.
 c. Moisture testing: Moisture Meter and Air Oven Method as per ISTA rules.
 d. Physical purity analysis
 e. Quick viability test (Tz).
 f. Aids for varietal identification: PCR, RAPD, RFLP, DNA finger printing, ELISA test.

3. Seed Certification and Quality Control: 3 L
 a. General procedure for seed certification
 b. Genetic purity maintenance
c. Seed Certification Board, Central Seed Committee and their functions.
d. Minimum seed certification standards (field and seed)

4. Field Inspection: 3 L
 a. Seed inspector, powers and duties
 b. Number of inspection with reference to stage of crop
 c. Procedure and observations during field inspection

Credit IV- Seed Legislation and Seed Pathology (15L)

1. Seed legislation: 2 L
 a. Seed legislation in India
 b. Types of seed legislation.

2. Artificial Seed Production: Introduction, concept, procedure. 1 L

3. Seed Pathology: 4 L
 a. Scope and economic importance of seed borne diseases
 b. Significance of seed transmission (soil, air, insect, and nematodes)
 c. Entry point, mechanism of seed transmission
 d. Impact of seed infection on seed, quarantine for seed
 e. Seed crop management-disease free seed production, integrated management of seed
 borne diseases
 f. Seed health testing methods

4. Seed entomology: 4 L
 a. Relation of insects and plants
 b. Fibre crop pests, pests of pulses, vegetable pests-any one from each
 c. Seed store grain pests (any two) with respect to their life cycle, way of infestation and
 control measures.

5. Seed Deterioration and Seed Storage: 4 L
 a. Definition, manifestation and causes of seed deterioration.
 b. Prevention measures of seed deterioration.
 c. Definition of seed storage
 d. General principles of seed storage
 e. Constructional features for good seed warehouse, other measures for pest and disease
 control, sanitation, seed treatment, fumigation, dehumidification, refrigeration (cold
 storage).

Reference:

 Delhi and New York.
BO- 3.6 PRACTICALS BASED ON SPECIAL PAPER

BO 3.48 ADVANCED SEED TECHNOLOGY

(Any 24 Practicals)

1. Study of floral biology of crops- cotton/okra, chilly/tomato, soybean/chick pea/ground nut, maize/wheat, sorghum/bajra (4P)
2. Grow Out Test (1P)
3. Study of seed germination (epigeal, hypogeal and viviparous types). (1P)
4. Study of seed germination testing methods (paper, soil and sand). (1P)
5. Preparation of artificial seed- demonstration (1P)
6. Study of physical purity test (1P)
7. Quick viability test (Tz). (1P)
8. Moisture testing by moisture meter and oven method (1P)
9. Sampling, dividing and mixing equipments (1P)
10. Analysis of seed samples for discolouration, abnormalities, fungal structures. (2P)
11. Detection and identification of important seed borne fungi by various detection methods- washing, agar and blotter method (Alternaria, Colletotrichum, Fusarium, Phoma, Microphomina and Mucor). (2P)
12. Detection and identification of seed borne bacteria (1P)
13. Study of important pests of Kharif (rainy) and Rabi (winter) cereals, their life cycle, damage and control measures (any two pests from each). (2P)
14. Study of the life cycle of store grain pests, damage and control measures (any two from each). (2P)
15. Visit to warehouse, storage godown and nearby seed industry. (1P)
16. Compulsory industrial visit to study processing sequences, TPS production (True Potato Seed), R & D fields (PCR, RAPD, RFLP and DNA finger printing) (1P)
17. Collection, submission of crops and storage pests, different seed varieties of any three-crop plants (1P)
BO 3.49 Advances in Horticulture and Floriculture

Credit I - Introduction to Horticulture (15L)

1. Importance and classification:- definition, branches of horticulture, importance of horticultural crops, nutritive value of fruits and vegetables in human nutrition, classification of horticultural crops 3L
2. Soil and climate requirements of fruit crops:- climate and its influence on fruit crops, fruit growing zones in India, soil and its relation to fruit growing 2L
3. Planning, lay-out and planting of fruit crops:- selection of site, preliminary operations, planning of orchards, systems of planting orchards, lay-outs for planting trees, spacing, digging of pits, selection of plant material, windbreaks 5L
4. Propagation methods of fruit plants:- medium of propagation, sexual methods: seed propagation, seed storage, pre-germination treatments, sowing of seeds, apomixis, asexual or vegetative methods of propagation, micropropagation 3L
5. Manuring, irrigation and cultural practices:- essential plant nutrients, principles of manuring, water requirements of fruit plants, methods of irrigation, orchard soil management 2L

Credit II - Pomoculture (15L)

1. Present status and scope of fruit growing in India and Maharashtra, importance of fruit growing 3L
2. Growth and fruiting habits: growth and fruiting habits, fruit bud differentiation, fruit setting, fruit drop, seedlessness, cracking of fruits, problems of fruiting, Bahar treatment, Unfruitfulness, pruning and training, role of plant growth substances 3L
3. Harvesting and marketing: harvesting and marketing of fruits, care after picking, packing of fruits, systems of marketing, export potential, air transport, transport by sea, cold storage of fruits 3L
4. Dryland horticulture:- importance of dryland fruits, selection of dry land fruits, rainwater management 3L
5. Organic horticulture: definition, synonyms and misnomers, principles, methods, merits and demerits, organic farming systems, components of organic horticulture systems, different organic inputs, role of biofertilizers in organic horticulture 3L
Credit III- Olericulture(15L)

1. Olericulture: concept, definition, classification of vegetable crops, present status and prospects of vegetable cultivation, nutritional and medicinal value.
2. Origin, history, evolution and distribution of vegetable crops, botanical distribution of families, genera and species covering tropical, subtropical and temperate vegetables.
3. Production technology of vegetables: introduction, soil and climate requirements, commercial varieties, sowing/planting times and methods, seed rate and seed treatment, nutritional and irrigational requirements, intercultural operations, weed control, mulching, physiological disorders, harvesting and post-harvest management, plant protection methods of following vegetables- a) tomato b) cabbage c) bhindi d) peas and beans.
4. Protected cultivation of vegetables: importance and scope of protected vegetable production.
5. Post-harvest / processing of vegetables: major value added products from vegetables.

Credit IV- Floriculture(15L)

1. Floriculture: concept, definition, Scope and Importance of floriculture, global scenario of flowers, scope of floriculture in India.
2. Pre-requisites of commercial floriculture: soil and climate requirements, field preparation, systems of planting, water and nutrient management, weed management, rationing, training and pruning, pinching and disbudding, special horticultural practices, use of growth regulators, physiological disorders and remedies.
3. Harvesting and processing of flowers: harvesting indices, harvesting techniques, post-harvest handling and grading, pre cooling, packing and storage, value addition, concrete and essential oil extraction, transportation and marketing, export potential, agri-export zones.
4. Commercial production of flowers: varietal wealth and diversity, climate, soil preparation, aftercare and mauring, pruning and training, harvesting, yield, important pests and diseases, control measures, harvesting, grading, packing and marketing, storage and transport, export potential of cut flowers: Chrysanthemum, Gerbera, Tuberose, Anthurium; Loose flowers- Scented Rose and Jasmine.
Reference Books:
2. Arora J. S Introductory Ornamental Horticulture Kalyani Publications
3. Bose T. K and Yadav L. P Commercial Flowers NayaProkash
4. Singh B. D Plant Breeding Kalyani Publications

BO 3.6 Practicals Based on BO 3.49 Advanced Horticulture and Floriculture

1. Study of garden tools and implements IP
2. Study of different media, containers and potting and repotting IP
3. Preparation of nursery beds and raising of nursery seedlings IP
4. Study of different methods of cutting and layering IP
5. Study of different methods of budding and grafting IP
6. Methods of training and Pruning IP
7. Study of different Bahar treatments used in fruit plants IP
8. Identification and description of species/varieties of any two fruit plants with respect to propagation, cultural practices and irrigation IP
9. Identification and description of species/varieties of any two vegetables with respect to propagation, cultural practices and irrigation IP
10. Identification and description of species/varieties of any two flowering plants with respect to propagation, cultural practices and irrigation. IP
11. Study of pests and diseases (any two) of fruits, vegetables, and flowers and their control measures 2P
12. Study of methods of postharvest technology for fruits and vegetables. IP
13. Study of methods of postharvest technology for flowers (cut flowers) IP
14. Study of different protective structures with respect to design, components, orientation and construction IP
15. Study of special cultural practices for flower crops under protected structure IP
17. Study of response of micronutrients and macronutrients on growth of cut flowers. 1P
18. Diseases and Pests of Roses and Gerbera in nurseries IP
19. Preparation of project, Cut flower production, IP
20. Project preparation of protected cultivation of important horticultural crops 1P
Note:
1. Visit to flower growing areas – Cut flowers/Floriculture industry
2. Visit to plant Horticulture Nursery/Greenhouse/Polyhouse
3. Visit to agriculture university to see Pomoculture, Olericulture and floriculture practices
BO 3.50 Advanced Biodiversity

Credit I- Introduction to Diversity (15L)

<table>
<thead>
<tr>
<th>1. Biodiversity</th>
<th>1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition, perspective, scope and importance.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Genetic Diversity</th>
<th>2L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Nature and origin of genetic variations, Measurement of genetic diversity. Methods based on DNA and chromosome: - allozymes. DNA based Marker technique:- RFLP, PCR and RAPD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Species Diversity</th>
<th>2L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species inventory, origin of species diversities, diversity indices, species richness and species abundance, alpha, beta and gamma diversity.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Ecosystem Diversity</th>
<th>3L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5. Diversity At Taxonomic Level</th>
<th>7L</th>
</tr>
</thead>
</table>

Credit II- Assessment and Loss of Biodiversity (15L)

<table>
<thead>
<tr>
<th>1. Assessment and Monitoring of Biodiversity</th>
<th>4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Methods of assessing and measuring biodiversity:-</td>
<td></td>
</tr>
</tbody>
</table>
Diversity indices based on species:
1. Species richness
2. Species abundance
3. Taxic diversity

Comparison of different sampling techniques for monitoring plant, bird, insect, mammals, reptiles and fish biodiversity.

<table>
<thead>
<tr>
<th>2. Magnitude and Distribution of Biodiversity</th>
<th>4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current status of plant diversity,</td>
<td></td>
</tr>
<tr>
<td>Global distribution of biodiversity,</td>
<td></td>
</tr>
<tr>
<td>Identification of diversity hotspots,</td>
<td></td>
</tr>
<tr>
<td>Biodiversity of India,</td>
<td></td>
</tr>
<tr>
<td>Endemism and biodiversity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Loss of Biodiversity</th>
<th>7L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Loss of Genetic Diversity</td>
<td></td>
</tr>
<tr>
<td>Factors affecting genetic diversity</td>
<td></td>
</tr>
<tr>
<td>1. Founder effects</td>
<td></td>
</tr>
<tr>
<td>2. Demographic bottle necks</td>
<td></td>
</tr>
<tr>
<td>3. Genetic drift</td>
<td></td>
</tr>
<tr>
<td>4. Inbreeding depression</td>
<td></td>
</tr>
</tbody>
</table>

Loss of Species diversity	

Introduction	
Habitat fragmentation	
Population size as a critical factor in species extinction	
MVP and population viability analysis	
Meta population concept	

Threatened Species	

IUCN threatened categories and unknown categories	
Census of threatened species	
Common features of threatened species	

Loss of Ecosystem diversity	

Loss of ecosystem diversity.	
Factors affecting ecosystems degradations and loss.	

<p>| Loss of Agrobiodiversity | |</p>
<table>
<thead>
<tr>
<th>Credit III - Conservation of Biodiversity (15L)</th>
</tr>
</thead>
</table>
| 1. **Introduction and Concept**
Conservation of genetic diversity, species diversity, and ecosystem diversity.
2. **In-situ and ex-situ conservation**
In-situ conservation methods :- protected areas, biosphere reserves, national parks, on farm and home garden conservation
Ex-situ conservation methods : - germplasm collection, botanic gardens, seed banks, test tube gene banks, pollen bank, field gene banks, DNA banks.
3. **Ecosystem restoration.**
Social approach to conservation and indigenous knowledge systems :-
Sacred groves and Sthalavrikshas.
People’s movement for Biodiversity conservation
Chipko movement, Chico River dam and Tribal Campaign.
Role of educational institutes in biodiversity conservation. |

<table>
<thead>
<tr>
<th>Credit IV - Management of Plant Biodiversity (15L)</th>
</tr>
</thead>
</table>
| 1. **Management of Plant Biodiversity**
Current magnitude of plant diversity, an overview of the variety of life forms; global distribution of biodiversity, factors affecting species distribution, number of species worldwide, estimates and examples of recently discovered communities, abundance of species in different ecosystems of the world; abundance of species in different ecosystems of the world: identification of diversity hot-spots; biodiversity of India; endemism and biodiversity.
2. **Values and Uses of Biodiversity**
Ethical values, aesthetic values, food, fodder, ornamentals, medicinal, economical and sociological approach
3. **Biodiversity and Biotechnology**
Biotechnology and its role in assessment of biodiversity and bio-resources.
Biotechnology and its role in conservation and utilization
Adverse impact of biotechnology on biodiversity: direct and indirect. |
BO 3.6 Practicals based on BO 3.50 **Advanced Biodiversity**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Analysis of aquatic vegetation studies - algae and fungi</td>
</tr>
<tr>
<td>1.</td>
<td>Estimation of algal and fungal species diversity in soil sample</td>
</tr>
<tr>
<td>2.</td>
<td>Study of vegetation including lower groups by belt transect along slope gradient.</td>
</tr>
<tr>
<td>3.</td>
<td>Study the biomass profile of the plants in an herbaceous ecosystem.</td>
</tr>
<tr>
<td>4.</td>
<td>Prepare shoot/canopy profile of tree stand along the line transect.</td>
</tr>
<tr>
<td>5.</td>
<td>Find out various diversity indices with the help of computer software.</td>
</tr>
<tr>
<td>6.</td>
<td>Remote sensing techniques for vegetation/plant diversity assessment using satellite imagery and aerial photographs.</td>
</tr>
<tr>
<td>7.</td>
<td>Construction of quadrat- To study the percentage of frequency, density, abundance and their relative values of forest communities. Prepare their frequency class diagram and compare them with Raunkiaer’s normal frequency diagram and also find out the Simpson’s index of dominance.</td>
</tr>
<tr>
<td>8.</td>
<td>Methods for estimating above-ground biomass for carbon pool assessment.</td>
</tr>
<tr>
<td>9.</td>
<td>Methods for estimating below-ground biomass for carbon pool assessment.</td>
</tr>
<tr>
<td>10.</td>
<td>Ex-Situ conservation methods of biodiversity- Micro propagation.</td>
</tr>
<tr>
<td>11.</td>
<td>Map of Phytogeographical regions of India</td>
</tr>
<tr>
<td>12.</td>
<td>Study of any three endangered plant species</td>
</tr>
</tbody>
</table>

Note: Field trip to places for study of vegetation type (including any one plant diversity hotspot/national park/wild life sanctuary/Sacred groove) prescribed in the syllabus for 2 to 5 days under the guidance of teachers. Preparation and submission of field visit report. *(Compulsory)*

References:

BO 3.5 Practicals Based on BO 3.1, BO 3.2 and BO 3.3

Gymnosperms
1. Study of external, internal and reproductive morphology of **Cycas** and **Zamia**
2. Study of external, internal and reproductive morphology of **Pinus, Cupressus, Araucaria, Agathis** and **Podocarpus**
3. Study of external, internal and reproductive morphology of **Gnetum** and **Ephedra**
4. Study of fossil specimens of gymnosperm (any six) from order Pteridospermales, Cycadeoidales and Pentoxylales

Angiosperms
1. Study of plant families (at least 8 locally available families- Six of Dicotyledons and two of Monocotyledons.
2. Identification of genus and species of locally available wild plants (any four)
3. Preparation of vegetative and reproductive botanical keys of any six plants from different families

Note:
1. Field trips of at least two days for collection and preparation of field notes and its submission.
2. Submission of report of at least 50 plant species from medicinal plants, endemic plants and exotic weeds from local area.

Practicals - Developmental Botany
1. Isolation of shoot apical meristems from seedling, young and mature vegetative plant and tracing the course of stomatal development and observations on stomatal types.
2. Histochemical analysis of secondary growth (primary to secondary axis) and comparison between vegetative SA and reproductively induced SA
3. Observations on
 a. Microsporogenesis and development of male gametophyte (pollen)
 b. Megasporogenesis and development of female gametophyte
 c. Types of endosperm, dissection and isolation of endosperm
4. Observations on stages of embryo development, dissection and isolation of developing embryo (3 stages) and *in vitro* germination of spore/pollen
5. Organogenesis in *in vitro* cultured tissues and somatic embryogenesis in *in vitro* cultured tissues
Economic Botany

1. Study of any four cereals, legumes oil seeds, vegetables, fruits, fibres, wood, essential oils w.r.t. botanical name, common name and applications. 2P

Industrial Botany I

1. Study of any six sea weeds with applications 1P
2. Isolation and culture of *Spirulina* 1P
3. Isolation, maintenance and culture establishment of any two nitrogen fixing algae 2P
4. Study of any four bio-pesticides and their market products 1P
5. Extraction of biodiesel from oil seeds/algae by transestertification process 1P
6. Extraction of and estimation of citric acid by titration and spectrophotometric method 2P
7. Study of any eight fermentation products of commercial importance from local market with reference to source and applications 1P
8. Quality testing of *Trichoderma* (total viability count) biofertilizer 1P

Note: 1. Visit to management institute and preparation of report is compulsory
 2. Visit to any industry with reference to BO 3.3 (Industrial Botany I)
BO 4.1 Computational Botany (60 L)

Credit I- Basic Biostatistics (15 L)

1. Introduction to Statistics
 Measures of central tendency – mean, mode, median and their properties
 Measures of dispersion – variance, standard deviation, coefficient of variance
 Symmetry and skewness, measures of skewness, kurtosis
 Sampling and sampling distributions – concept of sample and population, statistic, standard error, methods of sampling

2. Correlation and regression
 Bivariate correlation, positive correlation, negative correlation
 Measures of correlation – Scatter diagram, Karl-Pearson’s coefficient of correlation, Spearman’s rank correlation coefficient
 Regression – Equations of regression lines using least square method, regression estimate and its standard error

Credit II- Experimental Statistics (15 L)

1. Design of experiments and analysis of variance
 Principles of design – randomization, replication, local control, treatment group and control group
 Guidelines for designing the experiments, size of plot, number of replications
 Completely randomized design (CDR), randomized block design (RBD)
 Analysis of variance table (ANOVA), standard error, critical difference for pairs of treatments
 Tukey’s test for pairwise comparison of treatments
 Dunnet’s test for comparison of treatment means with control
 Duncan’s multiple range test
 Mann–Whitney U test

2. Testing of hypothesis
 Hypothesis, statistical hypothesis, critical region, level of significance, p-value, normal distribution
 T-test: t-test for mean, equality of two means, paired t-test, unpaired t-test, chi-square test: chi-square test for goodness of fit, independence of attributes, non-parametric test

NOTE – Emphasis be given on methodology and numerical problem solving rather than derivations and proofs.
Credit III - Bioinformatics (15 L)

1. Bioinformatics- Introduction to databases and retrieving information from databases: NCBI, EMBEL etc.
 1L
2. Molecular tools in protein and nucleotide sequence analysis; origin of new genes and Proteins, gene duplication and divergence
 3L
3. Sequence similarities:
 a. Pair wise comparison of DNA and protein sequences, dynamic programming algorithms, FASTA and BLAST.
 3L
 b. Multiple sequence alignments, progressive methods, iterative methods, localized alignments
 3L
 c. Determining phylogenetic relationships using DNA and protein sequences
 3L
 d. Protein structure prediction, motifs and domains
 2L

Credit IV-Biomathematics (15L)

1. Types of measurement and their units
 1L
2. Making solutions – moles and molarity, stock solutions and dilutions, making media and reaction mixtures
 4L
3. Ions and electrical potentials – Nerst and Goldman equations
 1L
4. Osmolarity and osmotic pressure measurements
 1L
5. Quantification of chemical reactions – equilibrium constant, reaction rates
 1L
6. pH measurements and preparation of buffers
 2L
7. Measuring concentrations using spectrophotometry
 1L
8. Measurement of enzyme activity
 2L
9. Specific activity of radioisotopes, making radioisotope solutions
 1L
10. Cell counting using serial dilutions, haemocytometry
 1L

Reference :
1. Lab Math – Adams, D.S. I.K. InternationsPvt Ltd. New Delhi, 2004

7. Bioinformatics and Molecular Evolution – Higgs PG and Attwood, TK
BO 4.2 Plant–Organism Interactions (60 L)

Credit I – Plant–Plant interactions (15 L)
1. Introduction 1L
2. Allelopathy in plants 4L
3. Parasitic association in plants 3L
4. Competitive mechanisms in plants 4L
5. Epiphytic plants 3L

Credit II- Herbivory and Carnivorous Plants
1. Herbivores–insect-plant interaction, grazing animals–physical and biochemical interactions 4L
2. Plant signaling and defense against herbivores 4L
3. Genetic engineering in plants for improved tolerance against herbivores 3L
4. Carnivorous plants – morphological features, specialized biochemical mechanisms for nutrient processing 4L

Credit III Symbiotic Associations
1. Lichens 3L
2. Endophytic association of plants – algae, bacteria, fungi 3L
3. Mycorrhizae 3L
4. Nodulating bacteria 2L
5. Algae and coral relationships 2L
6. Fungal-insect relationships 2L

Credit IV Pollination and Dispersal Biology
1. Pollination types and mechanisms – flower structure with reference to pollination mechanisms, mimicry, thermogenesis 4L
2. Pollinators – bees, beetles, butterflies, birds, mammals 4L
3. Co-evolution of pollinators and plants, fig-fig wasps interaction, humming bird-plant interaction, etc 3L
4. Seed dispersal mechanisms – fruit and seed morphology relevant to seed dispersal 4L

References:

Peter Scott 2008, “Physiology and Behaviour of Plants”. John Wiley & Sons Ltd.

BO 4.3 Industrial Botany Part II (60L)

Credit I- Herbal Technology (15L)

1. Introduction, concepts and prospects ... 2L
2. Phyto-technology- value addition to biodiversity through chemo prospection 3L
3. Medicinal plants mentioned in Atharva-Veda with their application 2L
4. Medicinal mushrooms for healthy life ... 2L
5. Natural dyes for cotton and silk industry – *Tecomella* leaves, Katha and Ravenchi wood, Seeds of *Bixa*, Babul flowers 2L
6. Medicinal herbs for dying hair and in cosmetics 2L
7. Aromatic plants as important sources of essence 2L

Credit II- Gardening and Forest Botany (15 L)

1. Floriculture- significance, importance, scope, prospects and role of floriculture in developing country, its scope for domestic and export market, factors affecting flower production, production of cut flowers and maintaining its quality, prolonging of vase life, packaging of cut flowers, cultivation of carnation, Gerbera, gladiolus, jasmines, orchids 5L
2. Principles of garden design ... 1L
3. Styles of gardening ... 1L
4. Indoor gardening .. 1L
5. Landscape gardening- Bio-aesthetic planning, landscaping of highways, railway stations and railway lines, bank of rivers and canal, city, town and country sides, educational institutes and factories 2L
6. Forest Botany- Forest, forestry and man, forest resources, forest organization, forest industries, social forestry, forest management, forests economics 5L

Credit III - Industrial Plant Tissue culture (15 L)

1. Laboratory design, maintenance of plant tissue culture laboratory, sterilization practices in plant tissue culture laboratory. 3L
2. Case studies of micro propagationof banana, sugarcane, *Lilium*, orchids and Gerbera with respect to:
 a. Selection of elite plants
 b. Preparation of explants
 c. Surface sterilization
 d. Initiation of cultures
e. Subculture
f. *In-vitro* rooting/ *In-vivo* rooting
g. Acclimatization of tissue cultured raised plants
h. Market potential (National, International) 7 L

3. Transporting of ex-agar plantlet, rooting of ex-agar plantlet 1 L
4. Economics of micropropagation of banana, sugarcane, *Lilium*, orchids and Gerbera 2 L
5. Preparation of bankable techno-commercial reports of micropropagation of banana, sugarcane and *Lilium* 2 L

Credit IV - Post-Harvest Technology of Fruits (15 L)

1. General account of tropical and subtropical fruits 2 L
 a) Introduction
 b) World fruit production and contribution to gross domestic product (GDP)
 c) Global consumption of tropical and subtropical fruits
 d) International trade in tropical and subtropical fruit

2. Postharvest biology of tropical and subtropical fruits 4 L
 a) Introduction
 b) Diversity in fruit characteristics
 c) Maturation and ripening
 d) Quality attributes
 e) Environmental factors affecting deterioration
 f) Biological factors affecting deterioration
 g) Pathological disorders and insect infestation
 h) Biotechnological approaches for improving quality and postharvest life

3. Postharvest technologies of fruits 4 L
 a) Introduction
 b) Maturity and harvesting indices- harvesting, conditioning, quality, the cold chain, centralized packing operations, ripening, processing

4. Preservation and processing of fruits 5 L
 a) Principles of conventional methods of preservation
 b) Fruit preparation for preservation purposes
 c) Refrigeration and freezing
 d) Drying
 e) Manufacturing and canning of fruit beverages and purees
 f) Manufacturing of jams and jellies

Reference Books
1. Post-harvest handling of tropical fruit, B R Champ, E Highley & G I Johnson (eds), Australian Centre for International Agricultural Research

3. Postharvest biology and technology of tropical and subtropical fruits: Volume 1: Fundamental issues, Edited by E Yahia, Universidad Autónoma de Querétaro, Mexico, Woodhead Publishing Series in Food Science, Technology and Nutrition No. 206

9. Handbook of horticulture, ICAR, New Delhi

10. Floriculture in India, Randhawa and Mukhopaddhay

11. Gardening in India, Bose and Mukherjee, Oxford

12. Introductory ornamental horticulture, Arora, Kalyani publishers

13. Forest Management in India, Vasant Desai, Himalaya Publications

14. Forest and Forestry, K P. Sagreiya, National Book Trust
BO 4.4 Plant Pathology (60 L)

Credit I - Introduction to Plant Pathology (15L)

1. Plant Pathology- Milestones in plant pathology 1L
2. Plant pathology and its objectives 1L
3. Nature and concept of plant disease, classification of plant diseases 2L
4. Causes of plant diseases, symptoms of plant diseases, disease cycle 2L
5. Bacterial and mollicutes diseases of plants 2L
6. Viral diseases of plants Diseases caused by viruses 2L
4. Nematodal diseases of plants 2L
5. Plant disease epidemiology and forecasting of plant disease epidemics 2L
6. Effect of plant diseases on human affairs 1L

Credit II - Pathogenesis (15L)

1. Pathogenesis: Penetration, infection and spread of diseases 4L
2. Effect of pathogen on plant physiological functions 4L
3. Enzymes and toxins in plant disease 4L
4. Pathogenicity of biotrophic and necrotrophic pathogens 3L

Credit III - Disease Development (15 L)

1. Environmental factors and disease development- effect of temperature, humidity, soil pH, soil texture, light, CO₂ and O₂ levels, nutrients and disease development 4L

2. Genetics of plant pathogen interactions- genetics of host parasitic interactions, phytoalexin and antigenhypothesis, vertical and horizontal resistance, physiological specialization, adaptation of fungi to different hosts 3L

3. Plant defense mechanism- morphological and biochemical defense, defense through induced synthesis of proteins and enzymes, detoxification of pathogen toxins and hypersensitivity of defense reactions, concept of phytoncides 3L
4. **Molecular biology** of host pathogen interactions, pathogenesisity genes, avirulance genes, host-R genes, effector molecules, miRNA

5. **Concept of post-harvest diseases of fruits, vegetables and seeds**

Credit IV-Disease Management and Related Aspects (15 L)

1. Diagnostic methods for detecting pathogens
2. Breeding methods for improving resistance in plants
3. Control of disease using fungicides and other chemicals
4. Bio-control agents for controlling disease
5. Disease control using biological and chemical activators of resistance
6. Plant disease assessment
7. Biotechnology and its role in plant pathology

References:

10. Disease of crops plants of India by Rangswami and Mahadevan, Prentice Hall Publication
BO 4.5 Practicals based on BO 4.1, BO 4.2, BO 4.3 and BO 4.4

Biostatistics (eight practicals)

1. Measurement of central tendency (mean, mode and median), variance, standard deviation, coefficient of variance and standard error from the given grouped and ungrouped data. IP
2. Measures of skewness and measures of Kurtosis (grouped and ungrouped data). IP
3. Determination of regression lines and calculation of correlation coefficient – grouped and ungrouped data. IP
4. Examples based on t – test IP
5. Drawing a simple random sample with the help of table of random numbers. IP
6. Chi-square test for goodness of fit and independent attributes. IP
7. Analysis of variance on the given data (ANOVA) IP
8. Tukey’s test for pairwise comparison of treatments IP
9. Dunnett’s test for comparison of treatment means with control IP
10. Duncan’s multiple range test for comparing treatment means IP
11. Determination of Karl-Pearson’s coefficient of correlation from the given grouped and ungrouped data. IP
12. Determination of Spearman’s rank correlation coefficient from the given grouped and ungrouped data. IP

Note: Any four practicals from practical number 1 to 6 and any four practicals from practical number 7 to 12

Bioinformatics (any two practicals)

1. Databases and database searching and DNA and protein sequence comparisons IP
2. Pairwise comparison of DNA and protein sequences – BLAST IP
3. Multiple sequence alignments, progressive methods, CLUSTAL IP
4. Determining phylogenetic relationships using DNA and protein sequences IP

Plant-Organism Interaction

1. Study of parasitic plants, epiphytic plants, carnivorous and lichens any two plants from each IP
2. Study of seed dispersal mechanism in plants with any six examples IP
3. In vitro allelopathic studies IP
4. Study of nodulating bacteria (Invitro and invivo) IP

Industrial Botany II (Any Five Practicals)

1. Extraction of essential oil by Soxhlet apparatus and preparation of dyes from any five flowering plants IP
2. Qualitative tests for carbohydrates, starch, proteins, lipids, alkaloids and tannins IP
3. Study of any 10 herbals used in medicine and preparation of reports of herbal products from local Market

4. Micropropagation of banana, sugarcane and Lilium

5. Study of any four post harvest diseases of fruits and submission of report on general post-harvest technology methods followed by farmers

Plant Pathology

1. Study of any two each- bacterial, nematodal and viral diseases

2. Study of any six fungal diseases

3. Isolation of fungal pathogens from leaves, stem and roots by cultural methods

4. Demonstration of Koch’s postulates for fungal pathogens

5. Study of pure culture of fungi by streak plate and pour plate method
BO 4.6 Research Methodology and Summer Training Report

I. Project (2 Credits)
Projects will be allotted in third semester and students will submit project work having introduction, review of literature, well defined material and methods, results and discussion, conclusions and references. The project should be presented at the end of fourth semester.

J. Review (1 Credit)
Based on review of literature on some advanced techniques in Botany and its presentation during practical examination

K. Summer Training (1 Credit)
1. Report submission based on one summer training in research institutes/laboratory/industry for at least one month with certificate from respective authority.
2. Techno-commercial case study of any four units from the following

Students will visit at least four units of the following to prepare a report for submission

1. Biofertilizer Unit
2. Mushroom cultivation unit
3. Green house unit
4. Floriculture unit
5. Plant nursery unit
6. Garden designing and maintenance unit
7. Fruit processing unit
8. Bio-pesticide unit
9. Biomass briquette unit
10. Biofuel units
11. Plant tissue culture industries
12. Farmhouse management
13. Pomoculture units
14. Organic farming
15. Fresh vegetables and flower supply unit
16. Herbal product industry
17. Forest department unit
18. Medicinal plant garden
19. Effluent treatment plant
20. Solid waste management unit