B. Sc. (Nanoscience and Nanotechnology)

Course Structure

Year I (800M Theory + 400 M Practical) 1200 Marks					
Code	Course Name L	.ect	ures	Ν	larks
NTT-1	Atomic and Molecular Spectroscopy	7	2		100
NTT-2	Inorganic and Organic Chemistry	7	2		100
NTT-3	Materials Science	7	2		100
NTT-4	Electromagnetism and Optics	7	2		100
NTT-5	Basic Electronics	7	2		100
NTT-6	Computer Basics and Programming	7	2		100
NTT-7	Mathematics and Statistics	7	2		100
LANG- 8	English	7	2		100
NTP-9	Practical – I	7	2		100
NTP-10	Practical – II	7	2		100
NTP-11	Practical – III	7	2		100
NTP-12	Practical – IV	7	2		100
Year II (700N	1 Theory + 300 M Practical) 1000 Marks				
Code	Course Name		Lectu	res	Marks
NTT-21	Solid State Physics		96		100
NTT-22	Quantum Mechanics		96		100
NTT-23	Thermodynamics		96		100
NTT-24	Advanced Electronics (VLSI and Sensors)		96		100
NTT-25	Synthesis of Nanomaterials: Physical, Chemic Biological	al,	96		100
NTT-26	Instrumentation for Characterization		96		100
NTT-27	Cell Biology		96		100
NTP-28	Practical – I		96		100
NTP-29	Practical – II		96		100
NTP-30	Practical – III		96		100
Year III (600N	M Theory + 300 M Practical) 900 Marks				
Code	Course Name		Lectu	res	Marks
NTT-31	Polymer Science and Surface Science		96		100
NTT-32	Molecular Biology		96		100
NTT-33	Nanoscale Device Fabrication		96		100
NTT-34	Applications of Nanotechnology-I		96		100
NTT-35	Applications of Nanotechnology-II		96		100
NTT-36	Applications of Nanotechnology-III		96		100
NTP-37	Practical – I		96		100
NTP-38	Practical – II		96		100
NTP-39	Project		96		100

B. Sc. (Nanoscience and Nanotechnology)

Year I (800M Theory + 400 M Practical) 1200 Marks				
Code	Course Name	Lectures	Marks	
NTT-1	Atomic and Molecular Spectroscopy	72	100	
NTT-2	Chemical Sciences	72	100	
NTT-3	Materials Science	72	100	
NTT-4	Electromagnetism and Optics	72	100	
NTT-5	Basic Electronics	72	100	
NTT-6	Computer Basics and Programming	72	100	
NTT-7	Mathematics and Statistics	72	100	
LANG- 8	English	72	100	
NTP-9	Practical – I	72	100	
NTP-10	Practical – II	72	100	
NTP-11	Practical – III	72	100	
NTP-12	Practical – IV	72	100	

NTT-1: Atomic and Molecular Spectroscopy

Sr. No.	Торіс	Lectures
1.	History-Parmanu, Atoms, Dalton's Atomic theory (Postulated and	02
	deduction)	
2.	Structure of Atom:	14
	J. J. Thomson model, Discovery of electron, e/m, Photoelectric effect.	
	Rutherford Nuclear model, Black body radiation, Hydrogen spectra –	
	Lymen series experiment. Hydrogen atom model-Significance of	
	second and third postulate of Bonr's model. Derivation of radius and	
	Atomic spectra is signature of the element. Concert of omission and	
	Atomic spectra is signature of the element. Concept of emission and	
	absorption of energy. Ground state and exited state. Emission and stark	
	absolption spectra. Drawbacks of Bonn Model, Zeeman and Stark	
	effect. Bohr – Sommerfeld model, Drawbacks of Sommerfeld model	
3	Vector atom model:	12
5.	Spinning electron and spatial quantization. Quantum numbers.	12
	Concept of coupling. Spectral notations.	
	Selection rules. Emission spectra with respect to Na atoms to	
	understand selection rules. Pauli's exclusion principle.	
4.	Atomic nucleus:	08
	Radioactivity- Half life period, biological half life, detectors.	
	Properties, Nuclear forces, Binding energy, Nuclear models- liquid	
	drop model, shell model, Nuclear magnetism.	
5.	Molecular Spectroscopy:	08
	Electromagnetic waves, Electromagnetic spectrum.	
	Definition- Spectra and spectroscopy. Energy transitions in	
	molecules. Introduction to molecular energy levels. Concept of	
	Excitation, Absorption, Emission.	
	Applications of each region in spectroscopy-Mössbaur, X-ray, UV-Vis.,	
	IR, ESR, NMR.	
6.	Pure rotational spectra	08
	Energy levels of rigid diatomic molecule. Rigid rotor model –	
	Derivation, energy level diagram for rigid and non rigid rotor.	
	Applications.	
7	Vibrational Dotational anastra (ID spastrageony)	10
7.	Finance levels of diatomic vibrating molecules. Spring and hall model	10
	Derivation onergy lovel diagram Vibrational-Rotational spectra	
	anergy level diagram P and B branch Principle construction and	
	working of IR spectrometer. Applications of IR spectroscopy	
8.	Electronic spectra (UV-Vis. Spectroscopy)	10
	Electronic molecular energy levels and transitions. Fluorescence.	-
	Phosphorescence. Principle, construction and working of colorimeter.	
	Spectrophotometer, Flurometer. Applications of UV-Vis Spectroscopy	

- 1. Introduction to Atomic Spectra, H.E. White, McGraw-Hill Book Company.
- 2. Atomic and Molecular Spectra: Laser, Raj Kumar, Kedarnath Ramnath, Meruth, Delhi.
- 3. Atomic Physics, J. B. Rajam, S. chand and Co., Delhi
- 4. Bioinstrumentation, Veerakumari, MJP Publishers, Chenni.
- 5. Fundamentals of Molecular Spectroscopy, C.N. Banwell, Mc Graw-Hill
- 6. Perspectives of Modern Physics, Arthur Beiser, Mc Graw-Hill

NTT-2: Chemical Science

Sr.No	Торіс	Lectures
1	Modern Periodic Table and Periodicity:	06
	-outline of modern periodic table	
	-Type of element: inert gases, representative elements, transition	
	element and inner transition element.	
	-Blocks in periodic table: S- block, P- block, d- block and f-block	
	element.	
	-Periodic law -Periodicity: 1) Atomic size 2) Ionization energy	
	3) Electronegativity 4) Electron affinity 5) Reactivity 6) Metallic and	
	non-metallic character.	
	- IUPAC nomenclature of super heavy element	
	-Shielding effect and shielding constant	
	-Salter's rule: Problem based on shielding constant	
2	Chemical bonding and Structure:	08
	- Octet rule, Attainment of stable electronic configuration	
	- Type of chemical bonds: 1) Ionic bond 2) covalent bond	
	3) Coordinate bond 4) metallic bond	
	- Hydrogen bond: Types of nydrogen bond, physical properties of	
	Van der Waal forges: Origin of van der Waal forges with suitable	
	-vali dei waai loi ces. Oligili oi vali dei waai loi ces witii suitable	
	-Type of overlap formation of σ and π honds S-S overlap P-P overlap	
	and n-d overlap with suitable examples	
	- Theories of honding. Valence hond theory (Hitler London theory	
	and Pauling Slater theory)	
3	Concept of Hybridization and VSEPR Theory:	04
Ũ	-Definition, need of hybridization and assumption.	01
	-Type of hybridization: sp, sp ² , sp ³ , dsp ² , sp ³ d and sp ³ d ² with suitable	
	example	
	VSEPR theory: Assumptions, need of theory application of the theory	
	to explain irregular geometry of molecule like H ₂ O, NH ₃ , ClF ₃ and TiCl ₄ .	
4	Structure, Nomenclature and Reactivity:	08
	Drawing of organic molecules, Nomenclature (common and IUPAC	
	system), Structural effects- Inductive effect, Resonance effect, Hyper	
	conjugation, Tautomerism. Strength of organic acids and bases.	
	Types of reagents, Types of organic reactions and intermediates.	
5	Chemistry of Hydrocarbons:	06
	Aliphatic and aromatic hydrocarbons, alkanes, alkenes and alkynes -	
	preparation, physical and chemical properties	
	Benzene- Structure of Benzene, stability of Benzene, reactions of	
6	Storoochamistry	04
0	Stereochemistry:	04
	athana Butana Ontical isomors in compound containing one chiral	
	center	
	Determination of R/S configuration Geometrical isomers (cis /trans)	
7	Chemical Kinetics:	08
	Introduction, order, molecular its rate constant specific reaction rate.	
	second order, third orders rate equations (equal conc.) n th order	
	reaction, effect of temperature on rate of reaction. Theories of	
	reaction rates-(collision and transition state), fast reaction, stop- flow	

	method, effect of substitute , primary and secondary salt effects, effect	
	of dielectric constant of solvent, ion – ion interaction, surface	
	potential.	
8	Electrochemistry:	12
	Part-I	
	Electrolytic cell: Faraday's laws of electrolysis. Properties of	
	electrolytes: Ionic strength of solutions Electrolytic conductance:	
	Determination – variation of conductance with concentration. Equal	
	conductance at infinite dilution. Transference and transference	
	numbers: Absolute velocity of ions and ionic mobilities. Hittorf's rule,	
	determination of transference numbers - Hittorf's method and	
	moving boundary method.	
	Part-II	
	Electrochemical cell: Single and standard electrode potentials.	
	Reference electrodes: (i) Primary reference electrode: Standard	
	hydrogen electrode (ii) Secondary reference electrode: Saturated	
	calomel electrode. Measurement of emf using potentiometer.	
	Construction and working of Weston saturated and unsaturated	
	standard cells Conventions regarding sign of EMF. Derivation of	
	Nernst equation and its use in calculating EMF of cells at different	
	activities of the individual electrodes, Different types of electrodes:	
	metal-metal ion electrodes, amalgam electrodes, gas electrodes, metal	
	insoluble salt electrodes and oxidation –reduction electrodes.	
	Classification of electrochemical cells: chemical cells and	
	concentration cells with and without transference Relationship	
	between EMF and free energy changes, enthalpies changes and	
	entropy changes occurring in electrochemical reactions. Equilibrium	
	constants for electrochemical reactions.	
	Applications of EMF: determination of solubility product of sparingly	
	soluble salt, pH and its determination using hydrogen, quinhydrone	
	and glass electrodes; Potentiometric acid-base, redox and	
0	precipitation titrations.	10
9	Fundamentals of Polymer Science:	10
	Basic Concepts, classification, techniques of polymerization: mass,	
	solution, suspension, emulsion and gas phase; control of molecular	
	nolymorization conclumorization ionic nolymorization ring	
	anoning polymerization, kinetics and mechanism of polymerization	
	Polymer properties - chemical resistance crystallinity and effect of	
	temperature Conducting polymers - classification and applications	
	Types of polymer degradation-thermal degradation mechanical	
	degradation, photodegradation, photo stabilizers.	
10	Modern Separation and Purification Methods:	06
	General purification techniques: Purification of solid organic	00
	compounds, recrystallisation, use of miscible solvents. use of drving	
	agents and their properties, sublimation. Purification of liquids.	
	Experimental techniques of distillation. fractional distillation.	
	distillation under reduced pressure. Extraction, use of immiscible	
	solvents, solvent extraction.	
	Chromatography: Principle of adsorption and partition	
	chromatography. Column chromatography, thin layer	
	chromatography, Paper chromatography,	

Chapter 1,2 and 3

- 1. Concise inorganic chemistry by J.D.Lee, chapman and hall 5th Ed.(1996)
- 2. Advanced inorganic chemistry by satyaprakashTuli,Basu and Madan 6thedn.
- 3. A new guide to Modern valence Theory by G.I. Brown.
- 4. Basic Inorganic Chemistry by Cotton and Wilkison.

Chapter 4

- 5. A guidebook to reaction mechanism by Peter Sykes
- 6. Organic chemistry by Clayden , Greeves, Warren and Wothers(Oxford press) Chapter5
 - 7. Organic chemistry by Morrison and Boyd 6th editionChapter6
 - 8. Stereochemistry of carbon compounds by Eliel J Ernest. Chapter7
 - 9. Chemical Kinetics- Laidiler

10. Physical chemistry, P.W. Atkins, Oxford university press, 1978.

- Chapter8
 - 11. Physical chemistry through problems, S.K. Dogra and S. Dogra, New age international,4th edition 1996.
 - 12. Physical chemistry, Gilbert. W. Castellan, Narosa publishing house, third edition 1985.
- 13. Physical chemistry, P.W. Atkins, Oxford university press, 1978 Chapter 9
 - 14. Polymer Chemistry, Bruno Vollmert. Springer, New York.
 - 15. Principles of Polymer Systems, F. Rodriguez, McGraw Hill.
 - 16. Polymer Science, V. R. Gowariker, N. V. Vishwanathan and J. Shreedhar, Willey Eastern Ltd., New Delhi.

Chapter10

- 17. 1. Quantitative Inorganic Analysis A.I. Vogel, ELBS. Ed.
- 18. 2. Chemical separation Methods J. A. Dean, Van Nostrand Reinhold Company.

NTT3: Material Science

Sr. No.	Торіс	Lectures
1.	Properties of Materials:	12
	Mechanical Properties- Stress, Strain, Elastic Strain, Plastic Strain,	
	Strength, Plasticity, Ductility, Hardness, Toughness, Malleability,	
	Creep, Fatigue, Stiffness, Fracture-ductile and brittle. Thermal	
	Properties: Specific Heat, Thermal Expansion, Thermal Conductivity.	
	Electrical Properties: Resistivity, Conductivity, dielectric strength.	
	Magnetic Properties: magnetic susceptibility, Giant Magnetic	
	Resonance (GMR).	
2.	Materials Science and engineering –Definition. Classification of materials. Structure levels. Structure-Property relationship.	04
3.	Crystal geometry and structure:	06
•	The space lattice, space lattice and crystal structures, crystal	
	directions and planes.	
4.	Structure of Solids	12
	Crystalline and noncrystalline states,	
	Inorganic solids- Covalent solids, Metals and alloys, Ionic solids, The	
	structure of silica and silicates	
	Polymers- Classification of polymers, Structure of long chain	
	polymers, Crystallinity of long chain polymers.	
5.	Atomic Disorder in Materials:	12
	Impurities in solids, Solid solutions in metals, Rules of solid solubility,	
	Imperfection in crystals, Defects in solids-point, line, surface and	
	volume, Atomic diffusions- Definition, The atomic model of diffusion,	
	Other diffusion processes, Fick's laws of diffusion.	
6.	Phase Diagrams:	10
	The phase rule, Single component system, Binary phase diagram,	
	Microstructural phase changes during cooling, the lever rule, Some	
	typical phase diagrams.	
7.	Single phase alloys:	06
	Deformation, Elastic Deformation, Plastic Deformation, Mechanism of	
	plastic Deformation- by slip, Critical resolved shear stress (CRSS),	
	Plastic deformation in poly crystalline materials.	4.0
8.	Introduction to nanomaterials. Relationship between their properties	10
	and applications. Current status and future of nanomaterials.	

- 1. Materials Science and Engineering, V. Raghavan, Prentice-Hall of India Pvt. Ltd, New Delhi, 4th Edition.
- 2. Elements of Materials Science and Engineering, L.H. Van Vlack, Addison Wesley, 6th Edition

NTT4: Electromagnetism and Optics

Sr. No.	Торіс	Lectures
1.	Introduction:	05
	Sources and effects of electromagnetic fields , Vector fields, Different	
	co-ordinate systems, vector calculus, Gradient, Divergence and Curl -	
	Divergence theorem , Stoke's theorem.	
2.	Electrostatics:	10
	Coulomb's Law, Electric field intensity, Field due to point and	
	continuous charges, Gauss's law and application, Electric potential,	
	Dielectric nelarization Dielectric strength Electric field Poundary	
	conditions Poisson's and Lanlace's equations. Canacitance Energy	
	density	
3	Magnetostatics:	12
5.	Lorentz Law of force magnetic field intensity – Biot–Sayart Law	12
	Ampere's Law . Magnetic field due to straight conductors, circular	
	loop, infinite sheet of current, Magnetic flux density (B) in free space,	
	conductor, magnetic materials, Magnetization, Magnetic field in	
	multiple media, Boundary conditions, Scalar and vector potential,	
	Magnetic force.	
4.	Electromagnetic Fields:	09
	Faraday's laws, induced emf – Transformer and motional EMF –	
	Forces and Energy in quasi-stationary Electromagnetic Fields -	
	Maxwell's equations (differential and integral forms) – Displacement	
	current – Relation between field theory and circuit theory.	00
5.	Introduction to Geometrical Optics:	09
	Lenses: thin and thick lenses, Lens equation, Cardinal points of an	
	aberration and their reduction	
6	Interference and Diffraction:	15
0.	Classification of interference of thin films. Interference by division of	15
	amplitude. Interference by wedge shaped film: Interference due to	
	reflected light and transmitted light. Fringes of equal inclination,	
	equal thickness, equal chromatic order (FECO fringes), colors of	
	thin films, Interferometry: Michelson's interferometer, Types of	
	diffraction: Fresenel's diffraction and Fraunhoffer's diffraction, Plane	
	diffraction grating, Rayleigh's criterian for resolution, Resolving	
	power of a grating.	
7.	Polarization:	12
	Introduction to polarization, Types of polarization- plane, circular,	
	elliptical, Polarization by reflection of light, Brewster's law,	
	Polarisation by double refracting uniaxial crystals, Linear polarizer	
	(Polarola), Fabrication of linear polarizer by Nicol prism	

- 1. Mathew N. O. Sadiku, 'Elements of Electromagnetics', Oxford University press Inc. First India edition, 2007.
- 2. Ashutosh Pramanik, 'Electromagnetism Theory and Applications', Prentice-Hall of India Private Limited, New Delhi, 2006.
- 3. Joseph. A.Edminister, 'Theory and Problems of Electromagnetics', Second edition, Schaum Series, Tata McGraw Hill, 1993.
- 4. William .H.Hayt, 'Engineering Electromagnetics', Tata McGraw Hill edition, 2001. 3. Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 1999.
- 5. A Text book of Optics, N.Subhramanyam, Brijlal, M. N. Avadhanulu, S. Chand publication.
- 6. Physical Optics by A.K.Ghatak, McMillan, New Delhi
- 7. Fundamental of Optics, F.A.Jenkins, H.E.White, McGraw-Hill international Edition.
- 8. Principles of optics, D.S. Mathur, Gopal Press, Kanpur

NTT5: Basic Electronics

Sr. No.	Торіс	Lectures
1.	Semiconductor Physics:	10
	Brief review of Band Theory, Basic concepts, Intrinsic and extrinsic	
	semiconductors , Donor and acceptor Impurities, charge densities in	
	semiconductor.PN Junction, Reverse and Forward bias conditions,	
	Diode Characteristic and parameter, rectification-half and full wave,	
	Bridge rectifiers, Zener diode, its role as regulator, photodiode.	
2.	Transitors:	14
	Bipolar junction transistor (BJT) and their characteristics as circuit	
	and gain elements. PNP and NPN transistors, Common Base, Common	
	Emitter and Common Collector Characteristics, DC Load line and Bias	
	Point., Biasing Methods - Base Bias, Collector-to-Base Bias, Voltage	
	Divider Bias,, and their Comparison. Unijunction transistor (UJT), UJT	
	characteristics, parameters and circuit operation.	
3.	Amplifiers :	12
	Amplifiers: Introduction of different types of amplifiers and their	
	characteristics, Principle of amplification, Frequency response of RC	
	coupled amplifiers, amplifier bandwidth and Concept of Cascaded	
	Amplifiers, Feedback amplifiers, Effect of positive and negative	
	feedback on amplifier gain and bandwidth. Single Stage CE Amplifier,	
	Resistance-Capacitance Coupled Two-Stage Amplifier, Series Voltage	
4	Negative Feedback, Additional Effects of Negative Feedback	40
4.	Introduction to Operational Amplifiers	18
	Basic Operational Amplifier, Inverting and Non-Inverting Op-Amp	
	Circuit. Need for an Up-Amp, Modes of Operation, Up-Amp	
	characteristics and its applications as adder, Subtractor, Integrator,	
	unierentiator and comparator, Photo transistor: its characteristics	
	anu applications. Numerical Examples, Cethodo Dev Oscillossono, Device Suppliers:	
	Numerical Examples, Cauloue Ray Oscilloscope, Power Suppliers:	
	Voltage Degulator, Introduction to Inverters and UDS	
F	Voltage Regulator, introduction to inverters and OFS.	10
5.	Introduction Decimal Binary Octal and Hovadocimal number	10
	systems and conversions. Binary Addition Binary Subtraction	
	Fractional Number Binary Coded Decimal Numbers Boolean	
	Algebra Truth tables of logic gates (AND OR NOT) NAND NOR as	
	universal gates XOR and XNOR Gate Half-adder Full-adder	
	Parallel Binary adder	
6.	Displays :	08
01	Seven segment display. Fourteen segment display. Dot matrix display	00
	LED Display : Introduction, Construction, Advantage of LEDs in	
	electronics display LCD Display : Introduction: Types of LCD display:-	
	Dynamic scattering and field effect type: Types of liquid crystal cells :-	
	Transmitting type and reflective type: Advantage and disadvantage of	
	LCD display common applications.	

- 1. A.P.Malvino.Electronic Principles.
- 2. J.D. Ryder Electronic Fundamentals and Applications.
- 3. J.Millman and C.C.Halkias Electronic Circuits and Devices.
- 4. J.Millman and C.C.Halkias Integrated Circuits and Devices.
- 5. Electronic Devices. Electronic Devices and Circuits: Jacob Millman, Christos C. Halkias TMH, 1991 Reprint 2001
- 6. Electronic Communication Systems, George Kennedy, TMH 4th Edition

NTT6: Computer Basics and Programming

Sr. No.	Торіс	Lectures
1.	Introduction to computers:	05
	Overview and functions of a computer system , Input and output	
	devices, Storage devices: Hard disk, Diskette, Magnetic tape,	
	RAID, ZIP devices, Digital tape, CD-ROM, DVD(capacity and access	
	time), Main Circuit Board of a PC: Chips, Ports, Expansion Slots,	
	Memory: Register, buffer, RAM, ROM, PROM, EPROM, EEPROM	
	(comparison), Types of Processing : Batch, Real-Time, Online, Offline	
2.	Modern computers:	06
	The workstation, The Minicomputer, Mainframe Computers, Parallel	
0	processing Computer and The Super Computer	10
3.	Introduction to operating systems:	12
	Operating System concept, Windows 98/XP, Windows server	
4	N1/2000, Unix/Linux and servers	00
4.	Data processing and presentation:	09
-	Introduction, MS office (World, Excel and Power Point)	0.4
5.	Loncepts of programming:	04
	Definition and Properties of algorithms, Algorithm development,	
(C Dregremming	24
0.	C Programming:	24
	Constants and variables. Variable names. Data types and their	
	declarations Symbolic Constants Operators and Expressions:	
	Arithmetic Operators Relational Operators Logical Operators	
	Assignment Operators, Conditional Operators, Edgical Operators,	
	Input/output functions: scanf (), printf (), getchar (), putchar ().	
	getch (). Formatted input/output, gets (), puts ().	
	Control statements: If, if else, while, do while for loop, nested control	
	structures (nested if, nested loops), break, continue, switch- case	
	statement, goto statement. Use of Library functions: e.g.	
	mathematical, trigonometric, graphics.	
	Arrays: 1-D, 2-D and String Concept of Pointers, User defined	
	functions: Definitions and declaration of function, function	
	prototype, passing arguments (Call by value, Call by reference).	
	Storage Classes: Auto, External, Static, Register variables.	
	File handling: Use of text files- Reading and writing	
	Graphics: Some simple graphic commands- Line, Circle, Arc, Ellipse,	
_	Bar.	10
7.	Computational Physics:	12
	I. Errors in Computation: Inherent errors in storing Numbers due to	
	inite bit representation to use in computer, Truncation error, round	
	UL Iterative methode, Discussion of algorithm and flowshouts and	
	ii. Iterative methods: Discussion of algorithm and nowcharts and	
	method Newton- Raphson method	
	III Least Square Curve fitting. Discussion of algorithm and flowcharts	
	and writing C program for straight line fit with example in physics	

- 1. Computer Fundamentals P.K. Sinha
- 2. Programming in C- (Schaum's series) Gottfreid TMH
- 3. Programming in C- Balgurusami Prentice Hall publications
- 4. Let us C- Yashwant Kanetkar BPB publications
- 5. Programming with C- K.R. Venugopal, S. R. Prasad, TMH.
- 6. Introductory methods of numerical analysis-S. Sastry Prentice Hall
- 7. Computer oriented numerical methods V. Rajaraman.
- 8. Mastering turbo C- Stan Kelly- Bootle, BPB publications.

NTT7: Mathematics and Statistics

Sr. No.	Торіс	Lectures
	Mathamatics	
1.	Matrices:	06
	Characteristic equation – Eigen values and eigen vectors of a real	
	matrix – Properties of eigen values Orthogonal reduction of a	
	symmetric matrix to diagonal form – Orthogonal matrices –	
	Reduction of quadratic form to canonical form by orthogonal	
2	transformations.	10
Ζ.	Functions of variables:	10
	Function of two variables – Partial derivatives, Frequently occurring	
	partial differential equations, degree, order, linearity and	
	nomogeneity (revision), Method of Separation of variables,	
	Successive differentiation, Total differentiation, Exact differential,	
	differential Simultaneous first order linear equations with constant	
	coefficients Linear equations of second order with constant and	
	variable coefficients Degree order linearity and homogeneity of	
	differential equation	
3	Complex Numbers:	08
5.	Introduction to complex numbers Argand diagram Rectangular	00
	nolar and exponential forms of complex numbers. De-Moivre's	
	Theorem (statement only) Different functions of complex numbers	
	Applications of complex numbers to determine velocity and	
	acceleration in curved motion. Problems.	
4.	Vector Algebra:	12
	Introduction to scalar and vector fields, scalars, vectors: dot product	
	and cross product, Scalar triple product and its geometrical	
	interpretation, Vector triple product and its proof.	
	Vector differential operator, Gradient of scalar field and its physical	
	significance, Divergence of scalar field and its physical significance,	
	Curl of vector field and its physical significance, Problems	
	Satistics	
1.	Data Condensation and Graphical Methods:	02
	Definition of Attribute and variable – Discrete variable, continuous	
	variable	
	Classification – Discrete and continuous frequency distribution,	
	Cumulative frequency distribution, Relative frequency distribution	
	Graphical Representation of frequency distribution- Histogram,	
	frequency polygon, frequenc y curve and ogive curve.	
2.	Measures of Central Tendency :	03
	Concept of central Tendency. Different measures of central	
	Tendency- Arithmetic mean, median and mode. Computation of	
	arithmetic mean, median and mode for ungrouped and grouped data.	
	Merits and demerits of mean, median and mode. Requisites of a good	
	Measure of Central Tendency. Partition values-Quartiles, Deciles and	
	Percentiles.	

3.	Measures of Dispersion :	03
	Concept of Dispersion. Different measures of Dispersion- Range,	
	Quartile deviation, Mean Deviation about (mean, median and mode),	
	Variance, Standard Deviation. Computation of these measures for	
	ungrouped and grouped data.	
4.	Skewness and Kurtosis:	02
	Concept of skewness. Different types of skewness, measures of	
	skewness- Pearson's and Bowely's Coefficient of skewness. Concept	
	of kurtosis and types of kurtosis.	
5.	Correlation and Regression :	05
	Concept of bivariate data, correlation, scatter diagram, Covariance,	
	Karl Pearson's coefficient of correlation, Properties of correlation	
	coefficient, computation of correlation coefficient for ungrouped	
	data.	
	Regression: Concept of regression, lines of regression.	
	Regression coefficient: Definition, computation, properties (with	
	proof).	
	Fitting of lines of regression. Examples and Problems.	
6.	Multiple Correlation and Regression :	03
	For trivariate data: concept of plane of regression, equation of plane	
	of regression multiple and partial correlation coefficient. Examples	
_	and Problems.	
7.	Elementary Probability Theorey :	04
	Sample space and events, types of events.	
	Probability: Classical definition of Probability Axiomatic approach to	
	Probability. Theorems on probability (without proof). Conditional	
	probability, Theorem of compound probability. Independent of two	
0	events.	06
ð.	Random variable and probability distributions:	00
	distributions:	
	Bornoulli binomial and Poisson distribution	
	Continuous random variable, continuous probability distribution:	
	Normal distribution exponential distribution	
9	Tests of Hypothesis:	05
).	Concent of statistical hypothesis null and alternative hypothesis	05
	critical region Level of significance (1) Large sample Test for	
	nonulation mean	
	(i) H0 : $\mu = \mu 0$ (ii) H0 : $\mu 1 = \mu 2$	
	(i) Chi –square Test for Independence of attribute (ii) t –test for	
	testing	
	(i) H0 : $\mu = \mu 0$ (ii) H0 : $\mu 1 = \mu 2$	
	Confidence interval for population mean.	
10.	Analysis of variance :	03
	One way classification, two way Classification	

Mathematics

- 1. Mathematical Physics P. K. Chattopadhyay New Age International Publishers.
- 2. Mathematical methods in the Physical Sciences (Second Edition) Marry L. Boas John Willy and Sons Publication.
- 3. Fourier series Seymour Lipschutz, Schaum outlines series.
- 4. Laplace transform : Seymour Lipschutz, Schaum outlines series.
- 5. Mathematical methods for Physicists : Weber and Arfken. (6th edition) Academic press – N. Y.

Statistics

- 6. Goon Gupta and Das Gupta : Fundamentals of Statistics, Vol. 1, The World Press Pvt. Ltd., Kolkata.
- 7. Miller and Fruend : Modern Elementary Statistics.
- 8. Snedecor and Cochran : Statistical Methods, Oxford and IBH Publishers.
- 9. Mukhopadhyay, P. : Mathematical Statistics (1996), New Central Book Agency, Calcutta, Introduction to Mathematical Statistics, Ed. 4 (1989), MacMillan Publishing Co. New York.
- 10. Gupta and Kapoor : Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi.
- 11. Neil Weiss : Introductory Statistics : Pearson Publishers
- 12. Gupta and Kapoor : Fundamentals of Applied Statistics, Sultan Chand and Sons, New Delhi

LANG8: English Oral and Written Communication

Sr. No.	Торіс	Lectures
1.	Sounds of English:	05
	Vowels, consonants, diphthongs	
	Weak forms, strong forms	
	Intonation	
2.	Vocabulary:	13
	Affixation, Norm, Verb, Adjective and Adverb.	
	Lexical sets, word formation, words often confused	
3.	Grammar:	18
	Tenses, change of voice, reported speech, conjunctions, use of	
	prepositions, phrases, simple, compound and complex sentences,	
	model auxiliaries	
4.	Writing Skills:	26
	a) Information transfer-Graphic to verbal, Charts- Pie chart, Bar	
	chart, Tree diagram, Flow chart.	
	b) Note making and note taking	
	c) Summarizing	
	d) Abstract writing	
	e) Expansion of ideas	
	f) Application writing	
5.	Oral Presentation:	10
	Lecture, Speech, Presentation, Group discussion, Anchoring, Turn	
	taking and Interview.	

- 1. Enriching Your Competence in English- Dr. Shridhar Gokhale
- 2. Written Communication in English-Sarah Freeman
- 3. English Grammar and Composition Pal and Suri
- 4. English Grammar and Composition-Wren and Martin
- 5. English for Practical Purposes- Ashok Thorat and Zeenath Marchant

NTP10: Practical I Chemical Science

Sr.	Title	No. of Practiclos
1	Determination of solubility product of a sparingly soluble salt by	
1.	conductometric method	01
2.	Determination of P^{Ka} value of weak acid using pH Metric method.	01
3.	To Prepare and characterize Phenol – formaldehyde and Urea	01
	formaldehyde resin.	
4.	Kinetics of acid catalyzed hydrolysis of methyl acetate and comparison	01
	of rate constants.	
5.	Isolation of natural food colours (chlorophyll) by soxhelet extraction	01
	and its characterization by spectrophotometer.	
6.	Determination of molecular status and partition coefficient of benzoic	01
	acid in Toluene and water	
7.	Determination of redox potentials of Fe2+/Fe3+by potentiometric	01
	titration of ferrous ammonium sulphate vs. potassium dichromate.	
8.	Separation and identification of cations by Paper chromatography and	01
	its Rf values determination.	
9.	Determine the water of crystallization in compound (MgSO ₄ /BaCl ₂)	01
10	gravimetrically	
10.	Determination of hardness of water from given sample by E.D.T.A.	01
11	method.	01
11.	Separation of binary mixture of cations by paper chromatography	01
10	Dranara tatrammina conner (II) subsets complex and determine the	01
12.	purity of complexes	01
13	Prenare Potassium triovalatoferrate (III) complex and determine the	01
15.	purity of complexes.	01
14.	Purify the given organic compound by crystallization (in water, water-	01
	alcohol and alcohol.)	-
15.	Purification of organic liquid by simple distillation.	01
16.	Separation and identification of components of given organic mixture by	01
	Thin layer chromatography.	
17.	Determination of Type, elements, functional group and physical constant	02
	of given organic compound (acid, phenol, base and neutral.)	
18.	Determination of molecular weight of given monobasic/dibasic acid.	01
19.	Preparation of DNP derivative of compound containing carbonyl	01
	functional group.	

- A textbook of Practical Organic Chemistry by A. I.Vogel
 A handbook of Organic Analysis Qualitative and Quantitative, by H.T. Clarke.

NTP10: Practical II

Sr. No.	Title	No. of Practicles		
Atomic and Molecular Physics				
1.	e/m by Thomson's method	01		
2.	Plank's constant	01		
3.	Characteristics of Photo-voltaic cell	01		
4.	To verify inverse square law of radiation using a photo-electric cell	01		
5.	Study of Uv-Vis. spectrophotometer and draw a calibration curve.	01		
6.	Quantitative analysis using Uv-Vis. spectrophotometer.	01		
7.	Study of IR spectrometer and analysis of spectra.	02		
8.	Study of sodium emission spectra	01		
9.	Find the wavelength of spectral lines of Balmer series using	01		
	constant deviation spectrometer.			
10.	To draw the plateau curve for a G.M. counter	01		
11.	To find the dead time of G.M. counter	01		
Materials Science				
1.	Study of Hook's law, elastic limit, plastic limit and breaking point.	01		
2.	Determination of tensile strength of given materials.	01		
3.	Determination of Young's Modulus of the material	01		
4.	Determination of Rigidity Modulus of the material – Torsion Pendulum	01		
5.	Resistivity determination for a semiconductor wafer using Four probe method.	01		
6.	Determination of thermal conductivity – Lee's Disc method	01		
7.	Susceptibility, Gauy method.	01		
8.	Study of crystal structures (Bravice Lattices, Millar Indices, Planer	01		
9	Observation of grains and grain boundaries	01		
<u>).</u> 10	Study of single uppry phase diagrams	01		
11.	Study of binary phase diagrams.	01		

NTP11: Practical III

Sr. No.	Title	No. of		
	Flectromagnetism and Ontics	Practicies		
Electionagnetism and optics				
1.	High resistance by Leakage method	01		
2.	To study the growth and decay of current in LR circuit using	01		
	magnetic core inductor			
3.	Anderson's bridge	01		
4.	Study of LR and RC circuit	01		
5.	LCR series circuit	01		
6.	Charging and discharging of capacitor	01		
7.	Determination of wavelength for a given laser source using grating	01		
8.	Study of Spectrometer and determination of angle of prism	01		
9.	To find the refractive index of the material of given prism using a	01		
	spectrometer			
10.	To find the dispersive power of the material of a given prism	01		
11.	Diffraction at straight edge/cylindrical obstacle	01		
12.	Optical activity of sugar solution (polarimeter)	01		
	Electronics			
		1		
1.	Circuit Theorems. (Thevenin's, Norton's and Maximum power transfer theorem)	01		
2.	I-V characteristics of a diode	01		
3.	Study of Zener diode	01		
4.	Study of rectifiers (half wave and full wave), line and load	01		
	regulations			
5.	Band gap of the semi-conductor material	01		
6.	Temperature coefficient of resistance of thermistor	01		
7.	Transistor characteristics (CE/CB configuration)	01		
8.	RC coupled transistor amplifier (single stage)	01		
9.	Operational amplifiers as adder and substractor	01		
10.	Study of logic gates (using IC) and verification of De Morgan's	01		
	theorem.			
11.	Use of CRO (AC/DC voltage measurement, frequency	01		
	measurement)			

Sr. No.	Title	No. of		
		Practicles		
Statistics				
1.	Measures of central Tendency	01		
2.	Measures of Dispersion	01		
3.	Correlation and regression for ungrouped data	01		
4.	Multiple regression, multiple and Partial correlation coefficients.	01		
5.	Application of binomial and Poisson distribution	01		
6.	Application of normal and exponential distribution	01		
7.	Large sample test for testing	01		
	(i) H0 : $\mu = \mu 0$ ii) H0 : $\mu 1 = \mu 2$			
8.	t-test for testing (i) H0 : $\mu = \mu 0$ ii) H0 : $\mu 1 = \mu 2$	02		
	Chi-square test for independence of attribute, variance.			
	F test for testing population variances.			
9.	ANOVA One – way and Two- way fixed effect model	01		
	Computer Basics			
1.	File handling: copy, rename, delete type etc. Directory structure:	01		
	make, rename, move directory			
2.	Word Processing (Microsoft Word)	01		
3.	Use of internet – Searching/Surfing on the WWW. Downloading	01		
	and Installing software/plug-ins on Windows 98/XP (Acrobat			
	Reader, Post Scripts Viewer, etc.)			
4.	Database Applications (Microsoft Access)	02		
5.	Usage of multimedia – (Microsoft Power Point)	02		
	Programming in 'C'			
6.	Factorial of a number	01		
7.	To find out the first 100 prime numbers	01		
8.	Matrix operation	01		
9.	Graphics (line, circle, arc, ellipse, bar, draw poly)	01		
10.	Sorting using file pointer	01		