### Curriculum Structure

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course Title</th>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Core 1 - Parallel and Distributed Computing</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Core 2 - Statistics and Advanced Algorithms</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Core 3 - Advanced Database Systems</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Core 4 - Software Project Management</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Core 5 - Fundamentals of Computer Network and Security</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Elective I’</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>Elective II’</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>Elective III’</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>Open Elective I’</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>10.</td>
<td>Open Elective II’</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>11.</td>
<td>Seminar 1 (Advanced Topic based on Seminar I)</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>12.</td>
<td>Seminar 2 (Advanced Topic based on Seminar II)</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>13.</td>
<td>Complexity Theory and Algorithms</td>
<td>III</td>
<td>5</td>
</tr>
<tr>
<td>14.</td>
<td>Advanced Topics***</td>
<td>III</td>
<td>5</td>
</tr>
<tr>
<td>15.</td>
<td>Research Methodology</td>
<td>III</td>
<td>5</td>
</tr>
<tr>
<td>17.</td>
<td>Research Progress Seminar I and Report</td>
<td>IV</td>
<td>20</td>
</tr>
<tr>
<td>18.</td>
<td>Research Progress Seminar II and Report</td>
<td>V</td>
<td>20</td>
</tr>
<tr>
<td>19.</td>
<td>Research Progress Seminar III and Report</td>
<td>VI</td>
<td>20</td>
</tr>
<tr>
<td>20.</td>
<td>Research Progress Seminar IV and Report</td>
<td>VII</td>
<td>20</td>
</tr>
<tr>
<td>21.</td>
<td>Thesis Submission</td>
<td>VIII</td>
<td>--</td>
</tr>
</tbody>
</table>

**Note**

Candidates are expected to perform minimum four (4) assignments for every core and elective course, and submit report as a bona fide document to supervisor/course instructor. The assignment may be in the form of modeling/ simulation/ programming/ experimental investigation/ fieldwork.
The candidates should select three electives from the list provided in Table 1

The candidates should select two open electives from the list provided in Table 2

The candidates should select two open electives from the list provided in Table 3

**Table 1**

<table>
<thead>
<tr>
<th>CIE1: Security and Privacy in the Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE2: Soft Computing Techniques</td>
</tr>
<tr>
<td>CIE3: Network System Design</td>
</tr>
<tr>
<td>CIE4: Advanced Operating Systems</td>
</tr>
<tr>
<td>CIE5: Software Engineering for Embedded Systems</td>
</tr>
<tr>
<td>CIE6: Digital Communication and Computer Networks</td>
</tr>
<tr>
<td>CIE7: Machine Learning</td>
</tr>
<tr>
<td>CIE8: Client – Server Based IT Solutions</td>
</tr>
<tr>
<td>CIE9: Web Services</td>
</tr>
<tr>
<td>CIE10: Aspect Oriented Programming</td>
</tr>
<tr>
<td>CIE11: Software Product Assurance</td>
</tr>
<tr>
<td>CIE12: Software Metrics</td>
</tr>
<tr>
<td>CIE13: Real Time Software and Systems</td>
</tr>
<tr>
<td>CIE14: Image and Video Processing</td>
</tr>
<tr>
<td>CIE15: Grid Computing</td>
</tr>
<tr>
<td>CIE16: Computer Architecture</td>
</tr>
<tr>
<td>CIE17: Information Technology and Systems</td>
</tr>
<tr>
<td>CIE18: Engineering Entrepreneurship</td>
</tr>
<tr>
<td>CIE 19: Internet Applications</td>
</tr>
<tr>
<td>CIE 20: Web Systems Integration</td>
</tr>
<tr>
<td>CIE 21: Engineering Statistics and Quality</td>
</tr>
</tbody>
</table>

**Table 2**

<table>
<thead>
<tr>
<th>CIO1: Mobile and Wireless Network Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIO2: Mashups</td>
</tr>
<tr>
<td>CIO3: Security Issues in Web-based systems</td>
</tr>
<tr>
<td>CIO4: Component Based Development</td>
</tr>
</tbody>
</table>

**Table 3**

<table>
<thead>
<tr>
<th>CIA1: Advanced Computer Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIA2: Software Engineering Concepts and Methods</td>
</tr>
<tr>
<td>CIA3: Advanced Statistical Methods and Algorithms</td>
</tr>
<tr>
<td>CIA4: Advanced Data Structure</td>
</tr>
</tbody>
</table>
CIC1: Parallel and Distributed Computing

Scope and issues of parallel and distributed computing, Taxonomy of parallel structures, Control mechanism, Address-Space Organization, Interconnection connection networks: Static and Dynamic interconnection networks, evaluating static interconnection networks, embedding other networks (Linear Array, Mesh, Binary Tree) into a hypercube; Routing mechanisms for static interconnection networks: Store and Forward (SF) Routing; Cut - Theory (CT) Routing; Cost-Performance trade-off; Architectural Models for Parallel Algorithm design, Simple message transfer between two processors; One-to-all broadcast; All-to-all broadcast; Reduction and prefix sums; One-to-all personalized communication; All-to-all personalized communication; circular shift, Performance matrices for Parallel systems: Run time, Speed up, Efficiency and Cost; The effect of granularity and data mapping on performance; Scalability of parallel systems; Iso-efficiency metric of scalability; Mini computer model; Workstation pool model; Client-server model; Pool of processors model; Hybrid model

Network technologies and Protocols, Building blocks; Client-server communication; group communication; Case study: Inter processor communication in UNIX; Design issues in Remote procedure calling; Implementation; Case Studies: SUN and ANSA; Various sorting and searching algorithms, performance metrics for parallel algorithm implementations.

References

CIC2: Statistics and Advanced Algorithms

Principles of maximum likelihood estimation and the analysis of censored time-to-event data, Logistic and Poisson regression analysis, Resampling and other simulation-based inference methods, Principles of graphical methods for high-dimensional data, Linear mixed effect models: incorporating multiple sources of variation into an analysis, Modeling biological and physical mechanisms with random-parameter models, Model free curve fitting.


References

5. Ahuja, Magnanti, and Orlin, Network Flows, Prentice Hall, 1993
Concurrency & Recovery Management in Centralized DBMS, Concept of Transaction and its properties, Scheduling of transactions, Conflict operations, Two Phase Locking protocol, Recovery management in Centralized DBMS, Distributed DBMS - Concepts and design, functions and architecture of a DDBMS, distributed relational database design, Transparencies in a DDBMS, Date’s Twelve rules for a DDBMS, Distributed transaction management, distributed concurrency control, distributed deadlock management, distributed database recovery, Replication servers, and Distributed query optimization, Mobile databases

Advanced database applications, weakness of RDBMS, storing objects in a relational database, next-generation database systems, OODBMS perspectives, persistence, issues in OODBM, advantages and disadvantages of OODBMS, Object-oriented database design, Object relational DBMS: Introduction, third generation database manifestos, SQL8, Object oriented extensions in Oracle, Comparison of ORDBMS and OODBMS, Web technology and DBMS

Requirements for web-DBMS integration, web-DBMS architecture, advantages and disadvantages of web-DBMS approach, approaches to integrating the web and DBMS, Oracle Internet Application Server (IAS), Data Warehousing Concepts, OLAP and Data mining, Evolution of data warehousing, data warehousing concepts, benefits and problems of data warehousing, comparison of OLTP systems and data warehousing, On-Line Analytical Processing, Introduction to data mining.
CIC4: Software Project Management

Characteristics of a software project, software scope and feasibility, resources, the SPM plan, size/scope estimation, decomposition techniques, WBS, sizing, function point, LOC, FP vs LOC, Gantt charts, activity networks, PERT/CPM networks, COCOMO I, COCOMO II models, quality control, quality assurance, formal technical reviews, the SQA plan, ISO and CMM standards, reactive vs. proactive risk strategies, risk projection, risk refinement, risk monitoring, monitoring and management, RMMP plan, earned value analysis, team structures: hierarchical, egoless, chief programmer, mixed; team software process; resource leveling, building a team: skill sets, configuration management: baselines, configurable items, SCM repository, SCM process, version control change control, configuration audit, project monitoring and control - audits and reviews.

References

CIC5: Fundamentals of Computer/Network Security

Introduction to the study of computer and network security from the view of information warfare, Information system threats, vulnerabilities and defensive mechanisms including cryptography, crypto-analysis, authentication, digital signatures, PKI, buffer overflow, vulnerability analysis, penetration testing, firewall and IDS, DDoS attacks and their defenses


References

CIE1: Security and Privacy in the Cloud

Security and privacy in the cloud, including confidentiality, integrity, and availability, authentication, identity and access management in the cloud, Current state of cloud security and privacy research

Review of the current state of data security and storage in the cloud, including confidentiality, integrity, and availability, Identity and access management (IAM) practice for authentication, authorization, and auditing of the users accessing cloud services, Discovery of security management frameworks and standards relevant for the cloud, Understanding of privacy aspects needed to consider in the cloud, including how they compare with traditional computing models, Importance of audit and compliance functions within the cloud, various standards and frameworks, Examination of security delivered as a service: a different facet of cloud security

References

1. Cloud Security and Privacy: An Enterprise Per... (Paperback) by Tim Mather, Subra Kumaraswamy
CIE2: Soft Computing Techniques

Neural Networks History, overview of biological Neuro-system, Mathematical Models of Neurons, ANN architecture, Learning rules, Learning Paradigms-Supervised, Unsupervised and reinforcement Learning, ANN training Algorithms-perceptions, Training rules, Delta, Back Propagation Algorithm, Multilayer Perceptron Model, Hopfield Networks, Associative Memories, Applications of Artificial Neural Networks


References

CIE3: Network System Design


References

CIE4: Advanced Operating Systems

Multi-core processor architectures, virtualization of guest kernels, monitoring of kernel behaviors, Architectures and internals of open source based operating systems, including Linux and Open Solaris, process and thread management, static and dynamic tracing along with OS performance issues, Tools to observe operating system behavior of Memory, File, Zone, Device management

References

CIE5: Software Engineering for Embedded Systems

Embedded Computers, Characteristics of Embedded Computing Applications, Challenges in Embedded Computing system design, Embedded system design process Requirements, Specification, Architectural Design, Designing Hardware and Software Components, System Integration, Formalism for System Design- Structural Description, Behavioral Description


OS Services, goals and structures, features, characteristics, process management, memory management, File system organization and implementation, I/O subsystem, Real time task models and performance metrics, Real time features of Vx works, WIN CE, QNX, Nucleus, RT Linux. Network OS, Inter process communication of Processes, Tasks and Threads, OS Security Issues, One case study, Introduction to mobile OS and programming of mobile OS

System-on-a-Chip (SoC), IP Blocks and Design Reuse, Processor Cores and SoC, Non-programmable accelerators, reconfigurable logic, multiprocessing on a chip, symmetric multiprocessing, heterogeneous multiprocessing, use of simulators, Compilers, Loaders, Linkers, locators, assemblers, Libraries, post run optimizer, debuggers, profiling techniques, binary utilities, linker script, system simulation, In Circuit Emulation, Validation and verification, Hardware Software partitioning, Co-design

References

CIE6: Digital Communication and Computer Networks

Digital data transmission modes, methods and media, Encoding & decoding principles, Identify and describe the protocol data units, networking devices, and purpose of the seven layers of the OSI model and compare that with the TCP/IP protocol stack, Protocols on the transport layer, reliable communication. Routing packets through a LAN and WAN, Link State and Distance Vector, Compare and contrast different data-link protocols including Ethernet, Token Ring and Wireless (802.11).

References

CIE7: Machine Learning


Introduction to Regular Expression and Finite Automata, Follow Automata, Conversion of DFA to RE using vertical and horizontal chopping, Multi-node loop, Reducing NFAs by invariant equivalences, Finite automata on infinite words and trees, Finite automata and monadic second order (MSO) logic on words and trees, Decidability of MSO theory of various infinite graphs, Application of Regular expression in Natural Language processing, Finding pattern in DNA and protein sequence, grep in Unix, Regular expression in Scheduling of process, Regular expression in perl, Context free grammar and Parsing, Application of context free grammar in Markup language and XML

References

CIE8: Client - Server Based IT Solutions


References

CIE9: Web Services

Managing the web services specifications, key components, tools and vendors, advantages of web services, disadvantages and pitfalls of Web Services, comparison of web services and other technologies, Goals, SOA, Major components of the architecture SOAP, XML, HTTP, Cookies, WSDL, XML schema, UDDI, Interactions between components

Introduction to Semantic Web: Web2.0, Web3.0, Grammar rules, namespace schema, RDF, RDFS, OWL, ontologies, Creating web services with state-of-the-art tools like Apache Axis, Java (J2EE), .NET, IBM Web sphere, creating web services clients, comparison of various web services tools, Web service interoperability, security, and future of web services

References

CIE10: Aspect Oriented Programming

Evolution of programming methodologies, What are aspects and how are they useful, OOPS Vs. AOP, What kind of problems can AOP solve, Tips and tricks for effective use of AOP, different AOP tools, importance of AOP in software development, Global trends in software development using AOP, Thinking aspects - in software design, code and testing. Writing and deploying reusable aspects, Using AOP to get more value from design patterns, Writing efficient AOP code Separation of concerns, point-cuts, Static aspects Dynamic aspects, Introduction to AspectJ, Meta-AspectJ, String templates, Template meta-programming, Domain modelling, Model transformations, Model-driven Architecture (MDA), Embedding Domain-specific Languages

References

CIE11: Software Product Assurance

Introduction, Visibility, Traceability, Lifecycle, Changes, Baselines, Baseline Update, Software Configuration, Product Integrity, Element of Software Product Assurance, Establishing and Maintaining Control, Knowing about Discrepancies in Software products, Bookkeeping

References

CIE12: Software Metrics

Measurement in everyday life, measurement in software engineering, scope of software metrics, representational theory of measurement, measurement and models, measurement scales, meaningfulness in measurement, goal-based framework for software measurement, classifying software measures, determining what to measure, software measurement validation, empirical investigation, types of investigation, planning and conducting investigations, Metrics data collection and analysis: What is good data, how to define the data, how to collect the data, how to store and extract data, analyzing software-measurement data, frequency distributions, various statistical techniques.

Measuring size, aspects of software size, length, functionality and complexity, measuring structure, types of structural measures, control-flow structure, modularity and information flow attributes, data structures, Modeling software quality, measuring aspects of software quality, software reliability, basics of software reliability, software reliability problem, parametric reliability growth models, predictive accuracy, recalibration of software-reliability growth predictions, importance of operational environment, wider aspects of software reliability, The intent of object-oriented metrics, distinguishing characteristics of object-oriented metrics, various object-oriented metric suites LK suite, CK suite and MOOD metrics, Runtime Software Metrics, Extent of Class Usage, Dynamic Coupling, Dynamic Cohesion, and Data Structure Metrics, The intent of component-based metrics, distinguishing characteristics of component-based metrics, various component-based metrics, Measuring productivity, teams, tools, and methods.

References

CIE13: Real Time Software and Systems

Real Time Software (RTS), Characteristics of RTS, Real Time Operating Systems (RTOS), Types of RTOS, Characteristics of RTOS, Processors and micro controllers of RTS, Skill set required for various types of RTS, SDLC for RTS, Process models for RTS-SPIRAL, incremental Xtreme, prototyping, RAD, Risk & Failure Analysis

RT requirement elicitation and analysis using structured and object-oriented approach, Applications of formal methods for requirement specification, Architecture properties, RT Architecture, design temporal & non temporal, Techniques, scheduling- (Tasks, T&S, RM scheduling), verification & validation, test strategy, RTS test techniques, Introduction to languages used for development of RTS, Introduction to Tools

References

CIE14: Image and Video Processing

Digital image representation, fundamental steps in image processing, elements of digital image processing systems digitization, A Simple Image Model, Sampling and Quantization, Relationship between Pixel, Image Formats, Image Transforms, Histogram processing, image subtraction, image averaging, smoothing filters, sharpening filters, enhancement in frequency and spatial domain, low pass filtering, high pass filtering

Fundamentals, Image Compression Models, Elements of Information Theory, Error-Free Compression, Lossy Compression, Recent Image Compression Standards, Introduction to Digital Video, Spatial and Temporal Redundancy, Entropy Coding, Motion Estimation, I, B, P Pictures, Generic Inter-Frame Video Codec, Recent Video Compression Standards, Video Surveillance, Video Coding for Broadcasting Applications, Content based Video Databases

References

CIE15: Grid Computing


Resource Discovery and Information Services, Information directory services, schedulers and resource brokers, Characterization of resource management problems based on job requirements, algorithms, tools and sample resource management systems, Monitoring, Scheduling, Performance tuning, Debugging and performance diagnostic issues, Grid security demands and solutions; authentication, authority, assurance, accounting, trust, group communication for large-scale, dynamic, multi-organization environments, Functionality and underlying infrastructure for sample general and application specific portals, Key issues for data management in Grids, including file transfer, data replication, data caching issues, catalog issues, Topics from Seti project, Sun Grid engine, EuroGrid and some other national grid projects, Overview of Grid simulation, Grid Economy, Semantic Grid, Autonomic Grid, Cloud Computing.

References

2. Luis Ferreira et al., Grid Computing in Research and Education, ibm.com/redbooks, (September 2003).
CIE16: Computer Architecture

Fundamentals of computer design, instruction set principles and examples, pipelining, advanced pipelining and instruction-level parallelism, memory-hierarchy design and survey of design issues in storage, interconnection network and multiprocessor systems.

Quantitative Measure of Performance for Evaluation of Designs, Instruction Set Architecture: Principles and Examples, Process Design: Data path and control units, Pipelining: Advanced design technologies and hazards, Instruction-level parallelism, Memory subsystems: Caches, Input/Output subsystems: Interfacing I/O to CPU/OS, Memory subsystems: Caches, Architectural support for security

References

CIE17: Information Technology and Systems

Systems thinking, Use and representation of information in business decision making,
Role of information technology in business, IT and software ecology, Software and IT as
business, Standards and network economics, solving business problems with IT, Product
development and IT

References

CIE18: Engineering Entrepreneurship


References

1. Business Modelling Multidisciplinary Approaches- Economics, Operational, and Information Systems (In Honor of Andrew B. Whinston) (Operations Research/Computer Science Interfaces Series) by Adapter-Abhijit Chaudhury; Adapter-Manish Agrawal; Editor-Clyde Holsapple; Editor-Varghese S. Jacob; Editor-H. Raghav Rao
CIE19: Internet Applications

Web services, Scalable content delivery, Applications of peer-to-peer networks, Performance analysis of Internet based application platforms

References

CIE 20: Web Systems Integration

Technologies: number of important technologies used in integration, Languages used to join together the various software components that make up an integrated system, Integration models available to the developer, Business process ideas: An advanced way of developing an integrated system is via a consideration of business processes, XML and JSON

References

CIE 21: Engineering Statistics and Quality

The Six Sigma process, Team building, Quality criteria, measurement, and information systems, Statistical process control, Customer satisfaction and a focus on the customer, Process management, Failure mode and effects analysis, Introduction to design of experiments, Quality management including the supply chain, Quality strategy and strategic quality management

References

CIO1: Mobile and Wireless Network Security

Cryptographic protocols for mobile & wireless networks, management issues in mobile and wireless computing, privacy and anonymity in wireless computing, security architecture & protocols in WLANs, B3G/4G mobile networks, security and privacy in mobile and wearable devices, sensors to enable security, security and privacy in pervasive computing.

References

1. Atul Kahate, Cryptography and Network Security, TMH
2. RK Tewari, PK Sastry KV Ravi Kumar, Computer Crime and Computer Forensics, Select Publishers Delhi
CIO2: Mashups

Transclusion: Client and Server based remixing of Information. Working with XML, Validating XML content, Online bookmarking, Designing, Creating and Publishing Blogs, RSS, Wikis, Bookmark sharing, Folksonomies and tagging, Tag cloud to blogs, Online sharing, RDF, Design, Create and Publish, Webcasts, AudioPodCasts, VideoPodCasts, Screencasts, Using Camtasia, Create API for use with Meshups, reuse API from Google/ Yahoo/ Microsoft: GIS / Maps / Satellite tools, Use SWX API with social networking sites like: Flickr or Twitter

References

CIO3: Security Issues in Web-based systems

Threats, enforcing security, authentication processes, encryption of data, defensive programming and ethical hacking in addition to ASP.NET

References

1. Mark Burnett, Hacking the Code: ASP.NET Web Application Security
CIO4: Component Based Development


References

4. Don Box; Essential COM, Addison-Wesley (2002).
CI13: Complexity Theory and Algorithms

Complexity of algorithms and of problems, Lower and upper bounds, Examples: sorting and travelling salesman, Models of computation and measures of complexity, Time and space complexity on a Turing machine, Decidability and complexity, Time complexity classes, Polynomial time problems and algorithms, P and NP, Non-deterministic machines, The class NP redefined, Non-deterministic algorithms for reachability and satisfiability, Reductions and completeness, NP-completeness of satisfiability, Graph-theoretic problems, Hamiltonian cycle and clique, Sets, numbers and scheduling, Matching, set covering and bin packing, Validity of boolean formulae and its completeness, NP intersection coNP, Primality and factorization, Cryptographic complexity, One-way functions, The class UP, Deterministic and non-deterministic space complexity classes, The reachability method, Savitch's theorem, The time and space hierarchy theorems and complete problems, Descriptive complexity, Logics capturing complexity classes, Fagin's theorem

References

1. Papadimitriou, Ch.H., Computational complexity, Addison-Wesley
2. Sipser, M., Introduction to the theory of computation, PWS
CIA1: Advanced Computer Architecture

Parallelism in uniprocessor system; parallel computer structure, architectural classification schemes, Memory hierarchy, Virtual memory system, memory allocation and management, cache memory management, Instruction and arithmetic pipelines design, linear and non-linear pipeline pipeline processors, superscalar and superpipeline design, SIMD array processors, SIMD interconnection network, Associative array processors

Multiprocessor architecture (loosely coupled, tightly coupled), interconnection networks, cache coherence and synchronization mechanism multiprocessor operating systems, exploiting concurrency, Special architecture: Dataflow architecture, VLSI computing structure

References

CIA2: Software Engineering Concepts and Methods

History; definitions; why engineered approach to software development; Software development process models from the points of view of technical development and project management: waterfall, rapid prototyping, incremental development, spiral models, Agile Software Development, Emphasis on computer-assisted environments. Selection of appropriate development process, Formal, semi-formal and informal methods; Requirements elicitation, requirements specification; Data, function, and event-based modeling; Some of the popular methodologies such as Yourdons SAD, SSADM etc; CASE tools-classification, features, strengths and weaknesses; ICASE; CASE standards

Principles of software projects management; Organizational and team structure; Project planning; Project initiation and Project termination; Technical, quality, and management plans; Project control; Cost estimation methods: Function points and COCOMO, Quality control, quality assurance and quality standards with emphasis on ISO 9000; Functions of software QA organization does in a project; interactions with developers; Quality plans, quality assurance towards quality improvement; Role of independent verification & validation; Total quality management; SEI maturity model; Software metrics, Need for configuration management; Configuration management functions and activities; Configuration management techniques; Examples and case studies, Basic Terminology, Testing Techniques and strategies, Brief introduction to various standards related to Software Engineering

References

CIA3: Statistical Methods and Algorithms

Nature and objectives of research, Study and formulation of research problem, Scope and formulation of hypothesis, Preparation and presentation of research proposal using statistical package, Appraisal of axiomatic approach of probability, Conditional probability, Baye’s rule, Conditional distributions, and conditional expectations, Basics of markov chains, Finite state space, Markov chains, Transition and stationary markov chains. Continuous time markov process: continuous time branching processes, Kolmogorov, Forward and backward equations, Pure birth, Pure death, Birth and death process


References

CIA4: Advanced Data Structure

Arrays, linked lists, stacks, queues, binary trees, hashing, graphs, sorting & searching techniques, Properties of sparse matrices, Linked list representation of sparse matrices, Properties of threaded trees, insertion, deletion and traversal, Properties of AVL trees, rotations, insertion and deletion, Properties of red-black trees, rotations, insertion and deletion, Definition of B-trees, basic operations on B-trees, deleting a key from a B-tree, Properties of Min-max heaps, building a heap, basic operations on heaps, application of min-max heaps

Binomial trees and binomial heaps, operations on binomial, Structure of Fibonacci heaps, merge able heap operations, decreasing a key and deleting a node, bounding a maximum degree, Disjoint set operations, linked list representation of disjoint sets, disjoint set forests, Topological sort, minimum Spanning tree, single-source shortest paths, all-pairs shortest paths, bi-connected components, strongly connected components, cycles, articulation points, bridges, string-matching algorithm, Rabin-Karp algorithm, String matching with automata, Knuth-Morris-Pratt algorithm, Boyer-Moore algorithm

References

Evaluation

1. The concerned course faculty will assess the candidate throughout the semester through quizzes/test/mid-term test/assignments etc. and submit the grades to the department

2. There shall be mandatory end semester theory examination of 100 marks of duration of three hours for each course