
 Elective: Programming Paradigms for Complex Problems
- Case Studies in Python

Teaching Scheme: Examination Scheme
Lectures:4 Hrs/Week Theory: 100 Marks

Course Objectives:

Why does one write programs? To solve problems.

The process of refining a problem to a solution is an engineering science – the science of
programming.

In this course we will explore an approach to programming that…

• approaches problems using foundational principles

• uses Python as the programming language for hands-on demonstration

• scales up toy problems to realistic case studies

Examples and case studies will be drawn from the following areas:

• Combinatorics

• Language processing – computer and natural

• Games

• Finance

• Graphics

• System Administration Scripting

Course Outcomes:

This course brings together major programming idioms and shows how they can be used to solve
different problems. The emphasis is on creating an understanding of these idioms through
carefully chosen problems and developing solutions in the Python language.

By the end of the course, the student will know:

a. How imperative and declarative programming are related

b. How to reason logically about program control and data structures

c. Informal introduction to program semantics

d. How types are related to values and operations on data

e. Appreciate the pros and cons of mutability in data structures

f. Recursion in control and data structures

g. Understand Modularity Object oriented-ness of programs

h. Have familiarity with lightweight software analysis tools

Unit Content Teaching
Scheme
(Hours / Unit)

I Imperative vs Declarative Programming - Why we need both views

Introduction to formal reasoning - Predicates and Invariants

Reasoning about control

Developing a program from its intended goal (or
postcondition)

Reasoning about data

Data is organized around types which may be concrete –
defined by its values, or abstract – defined by its operations

5

II
‘Typeful’ Thinking - Type systems: background and examples,
Type calculus, Tools for 'typeful' thinking

6

III Value vs Object Orientation - State: essential vs incidental

Value and object oriented data structures

Data driven programming

Functional programming

10

IV Recursion - Recursive functions (the usual recursion), Recursive
data (lazy data structures), Code mirrors data, Structural induction 4

V Object Oriented Programming - Abstract data types, Type
definition and extension in a typeless world,
Coroutines/generators/iterators, Properties,
Metaprogramming, Scripting: system management
principles, techniques, do's and don't's

10

VI
Modular Programming

- Namespaces: concepts, language features, tools; dicionaries,
modules, packages

- Installation, deployment, version management

5

Text Books:

1. Learning Python by Mark Lutz; O Reilly
2. Core Python Programming by Chun; Pearson LPE

Reference Books:

1. Python in a Nutshell by Alex Martelli; O Reilly
2. Python Language and Library manuals: https://docs.python.org
3. Types and programming languages by Pierce; MIT Press

	‘Typeful’ Thinking - Type systems: background and examples, Type calculus, Tools for 'typeful' thinking
	Value vs Object Orientation - State: essential vs incidental
	Value and object oriented data structures
	Data driven programming
	Functional programming

	Recursion - Recursive functions (the usual recursion), Recursive data (lazy data structures), Code mirrors data, Structural induction
	Object Oriented Programming - Abstract data types, Type definition and extension in a typeless world, Coroutines/generators/iterators, Properties, Metaprogramming, Scripting: system management principles, techniques, do's and don't's

	Modular Programming

