Savitribai Phule Pune University, Pune
BE(Electronics & Telecommunication)
(2012 course revised syllabus)
(w.e.f. June 2015)
BE (E & TC) Structure
2012 Course w.e.f. June 2015
Semester-I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LECT</td>
<td>TUT</td>
<td>PR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404181</td>
<td>VLSI Design & Technology</td>
<td>3</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>404182</td>
<td>Computer Networks</td>
<td>3</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>404183</td>
<td>Microwave Engineering</td>
<td>4</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>404184</td>
<td>Elective I</td>
<td>3</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>404185</td>
<td>Elective II</td>
<td>3</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>404186</td>
<td>Lab Practice I (CN & MWE)</td>
<td>4</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>404187</td>
<td>Lab Practice II (VLSI & Elective I)</td>
<td>4</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>404188</td>
<td>Project Phase I</td>
<td>2</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Elective I
1. Digital Image Processing
2. Embedded Systems & RTOS
3. Software Defined Radio
4. Industrial Drives and Control

Elective II
1. Multi rate & Adaptive Signal Processing
2. Electronic Product Design
3. PLCs and Automation
4. Artificial Intelligence
Semester-II

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LECT TUT PR</td>
<td>In Semester Assessment</td>
<td>PR OR TW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase I</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>404189</td>
<td>Mobile Communication</td>
<td>4 30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>404190</td>
<td>Broadband Communication Systems</td>
<td>4 30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>404191</td>
<td>Elective III</td>
<td>3 30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>404192</td>
<td>Elective IV</td>
<td>3 30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>404193</td>
<td>Lab Practice III (MC & BCS)</td>
<td>4 50 50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>404194</td>
<td>Lab Practice IV (Elective III)</td>
<td>2 50 50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>404195</td>
<td>Project Phase II</td>
<td>6 50 100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14 6 6 120</td>
<td>100 50 200 280</td>
<td>750</td>
</tr>
</tbody>
</table>

Elective III
1. Speech & Audio Signal Processing
2. RF Circuit Design
3. Audio Video Engineering
4. Soft Computing

Elective IV
1. Biomedical Signal Processing
2. Nano Electronics & MEMS
3. Detection & Estimation Theory
4. Wireless Networks
5. Open Elective*

*Any one subject from the list of Elective IV of computer/IT/Electrical/Instrumentation or Institute can offer elective IV based on any industry need with prior approval from BoS(Electronics). Repetition of subjects or topics is to be avoided.

Dr. D. S. Bormane
Chairman, BOS(Electronics)
VLSI Design & Technology (404181)

Teaching Scheme:
| Lectures: 3 Hrs/ Week | |

Examination Scheme:
<table>
<thead>
<tr>
<th>In Semester Assessment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I: 30</td>
</tr>
<tr>
<td>End Semester Examination:</td>
</tr>
<tr>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To study HDL based design approach.
- To learn digital CMOS logic design.
- To nurture students with CMOS analog circuit designs.
- To realize importance of testability in logic circuit design.
- To overview SoC issues and understand PLD architectures with advanced features.

Course Outcomes:
Aftersuccessfully completing the course, students will be able to
- Model digital circuit with HDL, simulate, synthesis and prototype in PLDs.
- Understand chip level issues and need of testability.
- Design analog & digital CMOS circuits for specified applications.

Unit I: VHDL Modeling 7L
Data objects, Data types, Entity, Architecture & types of modeling, Sequential statements, Concurrent statements, Packages, Sub programs, Attributes, VHDL Test bench, Test benches using text files. VHDL modeling of Combinational, Sequential logics & FSM, Meta-stability.

Unit II: PLD Architectures 7L

Unit III: SoC & Interconnect 6L

Unit IV: Digital CMOS Circuits 7L
MOS Capacitor, MOS Transistor theory, C-V characteristics, Non ideal I-V effects, Technology
Scaling. CMOS inverters, DC transfer characteristics, Power components, Power delay product. Transmission gate. CMOS combo logic design. Delays: RC delay model, Effective resistance, Gate and diffusion capacitance, Equivalent RC circuits; Linear delay model, Logical effort, Parasitic delay, Delay in a logic gate, Path logical efforts.

<table>
<thead>
<tr>
<th>Unit V: Analog CMOS Design</th>
<th>7L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit VI: Testability</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of fault, Need of Design for Testability (DFT), Testability, Fault models, Path sensitizing, Sequential circuit test, BIST, Test pattern generation, JTAG & Boundary scan, TAP Controller.</td>
<td></td>
</tr>
</tbody>
</table>

Text Books

1. Charles H. Roth, “Digital systems design using VHDL”, PWS.

Reference Books

<table>
<thead>
<tr>
<th>Computer Networks(404182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Scheme:</td>
</tr>
<tr>
<td>Lectures: 3 Hrs/Week</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Course Objectives:
- Understand state-of-the-art in network protocols, architectures, and applications
- To provide students with a theoretical and practical base in computer networks issues
- Define the basic terminology of computer networks
- Recognize the individual components of the big picture of computer networks
- Outline the basic network configurations
- List the layers of the TCP/IP and OSI model and describe the duties of each layer
- Understand the transmission methods underlying LAN and WAN technologies.

Course Outcomes:
After successfully completing the course students will be able to
- Understand fundamental underlying principles of computer networking
- Describe and analyze the hardware, software, components of a network and the interrelations.
- Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and technologies;
- Have a basic knowledge of the use of cryptography and network security;
- Have a basic knowledge of installing and configuring networking applications.
- Specify and identify deficiencies in existing protocols, and then go onto select new and better protocols.

Unit I: Physical Layer 6L

Unit II: Data Link Layer 6L
Introduction to Data link Layer, DLC Services, DLL protocols, HDLC, PPP, Media Access Control: Random Access, Controlled Access, Channelization. Wired LAN: Ethernet Protocol, Standard Ethernet, Fast Ethernet, Gigabit Ethernet, 10 Gigabit Ethernet.

<table>
<thead>
<tr>
<th>Unit III: Wireless LANS & Virtual Circuit Networks</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Wireless LANS: IEEE 802.11 project, Bluetooth, Zigbee, Connecting devices and Virtual LANS: Connecting devices, Virtual LANS.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV: Network Layer 6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit V: Transport Layer 6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Transport layer protocols and services, Port numbers User Datagram Protocol (UDP), Transmission Control protocol (TCP), SCTP, Quality of services: Dataflow characteristics, Flow Control.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit VI: Application Layer 6L</th>
</tr>
</thead>
</table>

Text Books

Reference Books

2. Wayne Tomasi, “Introduction to Data Communication and Networking”, 1/e, Pearson Education
Microwave Engineering (404183)

Teaching Scheme:
Lectures: 4 Hrs/ Week

Examination Scheme:
In Semester Assessment:
Phase I: 30
End Semester Examination:
Phase II: 70

Course Objectives:
- To lay the foundation for microwave engineering
- To understand the applications of microwave engineering
- Carry out the microwave network analysis.

Course Outcomes:
After successfully completing the course students will be able to
- Formulate the wave equation in wave guide for analysis.
- Identify the use of microwave components and devices in microwave applications.
- Understand the working principles of all the microwave tubes
- Understand the working principles of all the solid state devices
- Choose a suitable microwave tube and solid state device for a particular application
- Carry out the microwave network analysis
- Choose a suitable microwave measurement instruments and carry out the required measurements.

Unit I: Transmission Lines and Waveguides 8L
Introduction to Microwaves engineering: History of Microwaves, Microwave Frequency bands. Applications of Microwave.
General solution for TEM, TE and TM waves, Parallel plate waveguide, and rectangular waveguide. Wave guide parameters. Introduction to coaxial line, Rectangular waveguide cavity resonators, Circular waveguide cavity resonators

Unit II: Microwave Components 8L
Multi port junctions: Construction and operation of E-plane, H-plane, Magic Tee and Directional couplers.
Ferrites components: Ferrite Composition and characteristics, Faraday rotation, Construction and operation of Gyrrator, Isolator and Circulator.
Striplines: Structural details and applications of Striplines, Microstrip line, Parallel Strip line, Coplanar Strip line, Shielded Strip Line.
<table>
<thead>
<tr>
<th>Unit III : Microwave Network Analysis</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and applications of Impedance and Equivalent voltages and currents, Impedance and Admittance matrices, The Transmission (ABCD) matrix</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV : Microwave Tubes</th>
<th>8L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitations of conventional tubes, O and M type classification of microwave tubes, reentrant cavity, velocity modulation.</td>
<td></td>
</tr>
<tr>
<td>O type tubes</td>
<td></td>
</tr>
<tr>
<td>Two cavity Klystron: Construction and principle of operation, velocity modulation and bunching process Applegate diagram.</td>
<td></td>
</tr>
<tr>
<td>Reflex Klystron: Construction and principle of operation, velocity modulation and bunching process, Applegate diagram, Oscillating modes, o/p characteristics, efficiency, electronic & mechanical tuning.</td>
<td></td>
</tr>
<tr>
<td>M-type tubes</td>
<td></td>
</tr>
<tr>
<td>Magnetron: Construction and Principle of operation of 8 cavity cylindrical travelling wave magnetron, hull cutoff condition, modes of resonance, PI mode operation, o/p characteristics, Applications.</td>
<td></td>
</tr>
<tr>
<td>Slow wave devices</td>
<td></td>
</tr>
<tr>
<td>Advantages of slow wave devices, Helix TWT: Construction and principle of operation, Applications.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit V : Microwave Solid State Devices</th>
<th>8L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave bipolar transistor, FET, MESFET, Varactor Diode, PIN Diode, Shottky Barrier Diode, Tunnel Diode, TEDs, Gunn Diodes, IMPATT diode and TRAPATT diode. Structural details, Principle of operation, various modes, specifications, and applications of all these devices.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit VI : Microwave Measurements</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement devices: Slotted line, Tunable detector, VSWR meter, Power Meter, S-parameter measurement, frequency measurements, Power measurement, Attenuation measurement, Phase shift measurement, VSWR measurement, Impedance measurement, Q of cavity resonator measurement</td>
<td></td>
</tr>
</tbody>
</table>
Text Books

Reference Books
Digital Image Processing (404184)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To learn the fundamental concepts of Digital Image Processing.
- To study basic image processing operations.
- To understand image analysis algorithms.
- To expose students to current applications in the field of digital image processing.

Course Outcomes:
After successfully completing the course students will be able to
- Develop and implement algorithms for digital image processing.
- Apply image processing algorithms for practical object recognition applications.

Unit I: Fundamentals of Image Processing 6L
Steps in image processing, Human visual system, Sampling & quantization, Representing digital images, Spatial & gray-level resolution, Image file formats, Basic relationships between pixels, Distance Measures. Basic operations on images—image addition, subtraction, logical operations, scaling, translation, rotation. Image Histogram. Color fundamentals & models – RGB, HSI YIQ.

Unit II: Image Enhancement and Restoration 6L
Frequency domain enhancement: 2D DFT, Smoothing and Sharpening in frequency domain. Homomorphic filtering.
Restoration: Noise models, Restoration using Inverse filtering and Wiener filtering.

Unit III: Image Compression 6L
Unit IV: Image Segmentation and Morphological Operations 6L

Unit V: Representation and Description 6L

Unit VI: Object Recognition and Applications 6L

Feature extraction, Patterns and Pattern Classes, Representation of Pattern classes, Types of classification algorithms, Minimum distance classifier, Correlation based classifier, Bayes classifier. Applications: Biometric Authentication, Character Recognition, Content based Image Retrieval, Remote Sensing, Medical application of Image processing

Text Books

Reference Books

List of Experiments:

Note: Experiments are to be performed using software preferably open source.

1. To perform basic operations on images.
2. To perform conversion between color spaces.
3. To perform histogram equalization.
4. To perform image filtering in spatial domain.
5. To perform image filtering in frequency domain.
6. To perform image restoration.
7. To perform image compression using DCT / Wavelet transform.
8. To perform edge detection using various masks.
9. To perform global and adaptive thresholding.
10. To apply morphological operators on an image.
11. To obtain boundary / regional descriptors of an image.
12. To perform image classification / recognition
Embedded Systems & RTOS (404184)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester</td>
</tr>
<tr>
<td></td>
<td>Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To understand the Embedded system design issues.
- To learn real time operating system concepts.
- To understand the Embedded Linux environment
- To learn Embedded software development and testing process.

Course Outcomes:
After successfully completing the course students will be able to
- Get insight of design metrics of Embedded systems to design real time applications to match recent trends in technology.
- Understand Real time systems concepts.
- Understand Linux operating system and device drivers.
- Get to know the hardware – software co design issues and testing methodology for Embedded system.

Unit I: Introduction to Embedded Systems 6L

Unit II: Real Time Systems Concepts 6L

Foreground/ Background systems, Critical section of code, Resource, Shared resource, multitasking, Task, Context switch, Kernel, Scheduler, Non-Preemptive Kernel, Preemptive Kernel, Reentrancy, Round robin scheduling, Task Priorities, Static & Dynamic Priority, Priority Inversion, Assigning task priorities, Mutual Exclusion, Deadlock, Clock Tick, Memory requirements, Advantages & disadvantages of real time kernels.
Unit III: µCOS II
6L

Features of µCOS II. Kernel structure. µCOS II RTOS services: Task management, Time management, Intertask Communication and Synchronization.

Unit IV: Embedded Linux Development Environment
6L

Unit V: Linux Kernel Construction
6L

Unit VI: Embedded Software Development, Testing Process and Tools
6L

Text Books

Reference Books

List of Experiments:

Group A: ARM7/ ARM Cortex- M3 & µCOS - II Based Experiments (any four)

1. Multitasking in µCOS II RTOS using minimum 3 tasks on ARM7/ ARM Cortex- M3.
2. Semaphore as signaling & Synchronizing on ARM7/ ARM Cortex- M3.
5 Implementation of MUTEX using minimum 3 tasks on ARM7/ ARM Cortex- M3.

Group B: ARM9 & LINUX Based Experiments (any four)
7. Writing simple application using embedded Linux on ARM9.
8. Writing “Hello World” device Driver. Loading into & removing from Kernel on ARM9 board.
9. Write a program for I2C based RTC using embedded Linux on ARM9.
10. Using Device driver for GPIO, write a program to blink LED on ARM9.
11. Write a program for External Interrupt on ARM9.
Software Defined Radio (404184)

Teaching Scheme:
Lectures: 3 Hrs/ Week

Examination Scheme:
- In Semester Assessment:
 - Phase I: 30
- End Semester Examination:
 - Phase II: 70

Course Objectives:
- To understand “Modern Radio Communication System“ that can be reconfigured
- To understand GNU Radio
- To understand how SDR platform provides easy access to wireless network system
- To understand how unlike simulation in Communication Projects, SDR allows easy access to both PHY and MAC layer
- To understand the concept of Cognitive Radio and Spectrum sharing

Course Outcomes:
After successfully completing the course students will be able to
- Compare SDR with traditional Hardware Radio HDR
- Implement modern wireless system based on OFDM, MIMO & Smart Antenna
- Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio
- Work on open projects and explore their capability to build their own communication system.

Unit I: Software Defined Radio fundamentals

6L

- Introduction to SDR, Need of SDR, Principles of SDR, Basic Principle and difference in Analog radio and SDR, SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU, GNU software, MATLAB in SDR, Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range, RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer, Diplexer, RF filter, LNA, Image reject filters, IF filters, RF Mixers Local Oscillator, AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion
- Case study: AM/FM/BPSK/QPSK/OFDM Simulation in Matlab

Unit II: SDR Architecture

6L

- Architecture of SDR - Open Architecture, Software Communication Architecture, Transmitter
Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade-offs in using DSP, FPGA and ASIC, Power Management Issues in DSP,ASIC,FPGA

Case Study: JTRS –Goals of SCA ,Architectural details ,SDR forum Architecture

<table>
<thead>
<tr>
<th>Unit III : Multi Rate Signal Processing</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample timing algorithms, Frequency offset estimation and correction, Channel Estimation, Basics of Multi Rate, Multi Rate DSP, Multi Rate Algorithm, DSP techniques in SDR, OFDM in SDR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV : Smart/MIMO Antennas using Software Radio</th>
<th>6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit V : Cognitive Radio</th>
<th>6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit VI : Applications of SDR</th>
<th>6L</th>
</tr>
</thead>
</table>

Text Books:

Reference Books:

3. Dr. Taj Struman, Evaluation of SDR – Main Document
4. SDR – Handbook, 8th Edition, PENTEK

List of the Experiments (Minimum 8 experiments are to be performed):

1. Introduction to GNU Radio
2. Introduction to Software Defined Radio Systems
3. Implementation of AM using SDR
4. Implementation of FM using SDR with application such as transfer of files
5. Implementation of M-PSK transmitter using SDR
6. Implementation of M-PSK receiver using SDR
7. Implementation of M-QAM transmitter using SDR
8. Implementation of M-QAM receiver using SDR
9. Implementation of Transmission of files on Wireless media using SDR
10. Implementation of OFDM using SDR
11. Implementation of Cognitive radio using SDR
Industrial Drives and Control (404184)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td>Practical: 2 Hrs/ Week</td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- Describe the structure of Electric Drive systems and their role in various applications such as flexible production systems, energy conservation, renewable energy, transportation etc., making Electric Drives an enabling technology.
- Study and understand the operation of electric motor drives controlled from a power electronic converter and to introduce the design concepts of controllers for closed loop operation.
- Study DC, AC, special machines like stepper motor, servo motor and brushless motor and their control.

Course Outcomes:
- Understand the basic principles of power electronics in drives and its control, types of drives and basic requirements placed by mechanical systems on electric drives.
- Understand the operation of 1ф & 3ф converter drives for separately excited & series DC motors, dual converter drives, 2 quadrant and 4 quadrant DC chopper drives, Open-loop & closed-loop control of DC drives with transfer function, Dynamic and regenerative braking. Protection circuits for DC drives.
- Learn speed control of induction motor drives in an energy efficient manner using power electronics. To study and understand the operation of both classical and modern induction motor drives.
- Learn and understand working of cylindrical-rotor motor, salient-pole motor, reluctance motor, and permanent-magnet motors.
- Learn closed loop V/f control and load-commutated inverter (LCI) control. Variable reluctance & permanent magnet stepper motors & drives, switched reluctance motors & drives, brushless DC and AC motors & drives.

Unit I: DC Drives 6L

Basic characteristics of DC motors, Operating modes, Motor performance parameters, 1ф & 3ф converter drives for separately excited & series DC motors for continuous & discontinuous operations. Chopper fed DC drives, Comparison of converter fed drive & chopper fed drive. Open loop & closed loop control of dc drives with transfer function.
PLL control, Microprocessor based control of dc drives, Dynamic and regenerative braking of DC motors

Unit II: Induction Motor Drives & Control 6L
Induction motor characteristics, Control strategies like stator voltage control, v/f control, rotor resistance control, Variable frequency Square wave VSI Drives, Variable frequency PWM VSI Drives, Variable frequency CSI Drives, Closed loop control of Induction motors, v/f control of three phase IM using PWM inverter, Vector Control (Field oriented Control): Basic principle of vector control, Direct vector control & indirect vector control, DQ Transformation, Braking of induction motor, soft acceleration and deceleration, various protections.

Unit III: Special Motor Drives I 6L
Cylindrical rotor motor Drive, Salient pole motor Drive, Switched reluctance motor (SRM) drive, Synchronous Reluctance motor drive, self-controlled synchronous motor drives

Unit IV: Special Motor Drives II 6L

Unit V: Drive Applications in Renewable Energy 6L
Power Electronics for wind power systems
Wind power system: System component, Turbine rating, Electrical load matching, fixed speed and variable speed operation, System design features, Maximum power operations and System control requirement
WECS: Principle of WECS, role of power electronics in WECS, Drive selection criteria for fixed speed and variable speed WECS, Stand-alone PV systems, Grid connected PV systems.
Power Electronics for Photovoltaic Power Systems
Basics of Photovoltaic: The PV cell, Module and array, I-V and P-V curves, PV system component, Stand-alone PV systems, Grid connected PV systems.

Unit VI: Applications of Artificial neural network and fuzzy logic in Drives 6L
Fuzzy logic Principle and applications: Introduction, Fuzzy sets, Fuzzy system, Fuzzy control, Fuzzy logic based induction motor speed control.
Neural network principle and applications: Introduction, Neural network in identification and control, AI Applications in electrical machines and drives, Neural network based PWM controller

Text Books
1. Fundamental of Electrical Drives, Gopal K. Dubey, Narosa Publishing House
Reference Books

2. Thyristor DC drives, P. C Sen, John Wiley.

List of Experiments (Minimum 8 experiments are to be performed):

1. DC motor control using semi/full 1-Φ /3-Φ converter. (Open loop and closed loop)
2. 4-Quadrant chopper fed reversible DC drive
3. Dual converter fed DC Drive (Single phase/ Three phase)
4. V/f controlled AC induction motor drive
5. Speed Control of Universal Motor.
7. BLDC Motor drive.
8. Three phase brushless generator for wind energy applications.
9. Simulation of closed loop controlled DC drive using PSIM/Matlab/MathCad
10. Simulation of Closed loop controlled AC motor drive using PSIM / Matlab/MathCad/ open source software
Multi-rate and Adaptive Signal Processing (404185)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
1. To extend students understanding of DSP concepts for designing filters and filter-banks
2. To understand various Multirate DSP applications
3. To extend Multirate concepts into Multiresolution analysis.
4. To make student learn the need of adaptiveness in digital filters

Course Outcomes:
1. The student will use theory of multirate processing for design of basic systems.
2. The student will be able to perform multiresolution analysis using Haar wavelet.
3. The student will show skills for design of adaptive filter for Wiener filter.

Unit I: Basics Signal Processing 6L

Unit II: Multi-rate DSP 6L
- Need for Multi-rate DSP, Decimation by factor D, Interpolation by factor I, Sampling rate conversion by rational factor I/D, Design of practical sampling rate converters, software implementation of sampling rate converters (Decimators and Interpolators), sample rate conversion using poly-phase filter structures

Unit III: Time Frequency Representation of signals 6L
- Time Frequency description of signals, Concept of Instantaneous frequency and Complex signal, Uncertainty principle, need for joint time frequency representation, tiling diagrams.
<table>
<thead>
<tr>
<th>Time Fourier Transform, Wigner Ville distribution, Continuous Wavelet Transform, Discretization of STFT & CWT, Spectrograms and Scalograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit IV: Time-Frequency (Wavelet) Analysis of signals 6L</td>
</tr>
<tr>
<td>Unit V: Adaptive Filters 6L</td>
</tr>
<tr>
<td>Unit VI: Applications of Multi-rate and adaptive signal processing techniques 6L</td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

Electronic Product Design (404185)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs./ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To understand the stages of product (hardware/software) design and development.
- To learn the different considerations of analog, digital and mixed circuit design.
- To be acquainted with methods of PCB design and different tools used for PCB Design.
- To understand the importance of testing in product design cycle.
- To understand the processes and importance of documentation.

Course Outcomes:
After successfully completing the course students will be able to
- Understand various stages of hardware, software and PCB design.
- Importance of product test & test specifications.
- Special design considerations and importance of documentation.

Unit I: Introduction to Electronic Product Design (6L)
Man machine dialog and Industrial design, user-centered design, five element of successful design, cognition, ergonomics. Packaging and factors, design for manufacture, assembly and disassembly, wiring, temperature, vibration and shock. Safety, noise, energy coupling, grounding, filtering and shielding.

Unit II: Hardware Design & testing methods (6L)
Design process. Identifying the requirements, formulating specifications, design specifications, Specifications verses requirements, System partitioning, Functional design, architectural design, Functional model verses architectural model. Prototyping. Performance and Efficiency measures. Formulating a test plan, writing specifications, Test procedure and test cases, Egoless design, design reviews. Module debug and test: black box test, white box test, grey box test.

Unit III: Software Design and Testing methods (6L)
Types of Software. Waterfall model of software development. Models, metrics and software limitations. Risk abatement and failure preventions. Software bugs and testing. Good
programming practice. User interface. Embedded, Real time software.

<table>
<thead>
<tr>
<th>Unit IV: PCB design 6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit V: Product Debugging and testing 6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steps of Debugging, Techniques for troubleshooting, characterization, Electromechanical components, passive components, active components, active devices, operational amplifier, Analog-Digital Conversion, Digital Components, Inspection and test of components, Simulation, Prototyping and testing, Integration, validation and verification. EMI & EMC issues.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit VI: Documentation 6L</th>
</tr>
</thead>
</table>

Text Books

Reference Books

PLC & Automation (404185)

Teaching Scheme:
- Lectures: 3 Hrs/ Week

Examination Scheme:
- In Semester Assessment:
 - Phase I: 30
- End Semester Examination:
 - Phase II: 70

Course Objectives:
- Ability to recognize industrial control problems suitable for PLC control
- An overview of technology of advanced topics such as SCADA, DCS Systems, Digital Controller, CNC Machines.
- The ability to select the essential elements and practices needed to develop and implement the Engineering Automation using PLC approach.

Course Outcomes:
After successfully completing the course students will be able to
- Understand PLC architecture, PLC addressing concepts.
- Develop PLC ladder programs for simple industrial applications.
- Design Automation systems for industrial applications.

Unit I: Process Control & Automation 6L

Unit II: Transmitters and Signal Conditioning 6L
- Need of transmitters, Standardization of signals, Current, Voltage and Pneumatic signal standards, 2-Wire & 3-Wire transmitters, Analog and Digital signal conditioning for RTD, Thermocouple, DPT etc, Smart and Intelligent transmitters

Unit III: Controllers and Actuators 6L
- PID Controller, Cascade PID control, Microprocessor Based control, PAC (Programmable automation controller), Mechanical switches, Solid state switches, Electrical actuators: Solenoids,
Relays and Contactors, AC Motor, VFD, energy conservation schemes through VFD, DC Motor, BLDC Motor, Stepper Motor, Servo Motor, Pneumatic and hydraulic actuators.

<table>
<thead>
<tr>
<th>Unit IV: PLC and Human Machine Interface (HMI)</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions of PLC, Advantages, Architecture, working of PLC, Selection of PLC, Networking of PLCs, Ladder Programming, Interfacing Input and Output devices with PLC, PLC based automated systems. High frequency inputs. PLC programming standard IEC61131, Soft PLC techniques. IT Interfaces required: for ERP, MIS, MES. Supporting Applications interfaces: RFID, Barcode, Vision Systems. HMI: Block Diagram, Types, Advantages, Applications.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit V: SCADA & Distributed control system</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of SCADA, Features of SCADA, MTU- functions of MTU, RTU- Functions of RTU, Applications of SCADA, Communications in SCADA- types & methods used, Mediums used for communication, Introduction to DCS, Architecture of DCS, Input and output modules, communication module, Specifications of DCS.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit VI: Automation and CNC (Computer Numeric Control) Machines</th>
<th>6L</th>
</tr>
</thead>
</table>

Text Books

3. Stuart A. Boyer, SCADA supervisory control and data acquisition, ISA Publication

Reference Books

Artificial Intelligence(404185)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3Hrs/ Week</td>
<td>In Semester Assessment: Phase I : 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination: Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To learn various types of algorithms useful in Artificial Intelligence (AI).
- To convey the ideas in AI research and programming language related to emerging technology.
- To understand the concepts of machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing.
- To understand the numerous applications and huge possibilities in the field of AI that go beyond the normal human imagination.

Course Outcomes:
After successfully completing the course students will be able to
- Design and implement key components of intelligent agents and expert systems.
- To apply knowledge representation techniques and problem solving strategies to common AI applications.
- Apply and integrate various artificial intelligence techniques in intelligent system development as well as understand the importance of maintaining intelligent systems.
- Build rule-based and other knowledge-intensive problem solvers.

<table>
<thead>
<tr>
<th>Unit I : Foundation</th>
<th>6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit II : Searching</th>
<th>7L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search and exploration, Informed search strategies, heuristic function, local search algorithms and optimistic problems, local search in continuous spaces, online search agents and unknown environments, Constraint satisfaction problems (CSP), Backtracking search and Local search for</td>
<td></td>
</tr>
</tbody>
</table>
CSP, Structure of problems, Games: Optimal decisions in games, Alpha- Beta Pruning, imperfect real-time decision, games that include an element of chance.

Unit III: Knowledge Representation 6L
First order logic, representation revisited, Syntax and semantics for first order logic, Using first order logic, Knowledge engineering in first order logic, Inference in First order logic, prepositional versus first order logic, unification and lifting, forward chaining, backward chaining, Resolution, Knowledge representation, Ontological Engineering, Categories and objects, Actions - Simulation and events, Mental events and mental objects.

Unit IV: Learning 6L
Learning from observations: forms of learning, Inductive learning, Learning decision trees, Ensemble learning, Knowledge in learning, Logical formulation of learning, Explanation based learning, Learning using relevant information, Inductive logic programming, Statistical learning methods, Learning with complete data, Learning with hidden variable, EM algorithm, Instance based learning, Neural networks - Reinforcement learning, Passive reinforcement learning, Active reinforcement learning, Generalization in reinforcement learning.

Unit V: Perception and Expert System 5L
Visual perception-Waltz’s algorithm, Introduction to Expert System, Architecture and functionality, Example Expert system

Unit VI: Natural Language Understanding 6L
Why NL, Formal grammar for a fragment of English, Syntactic analysis, Augmented grammars, Semantic interpretation, Ambiguity and disambiguation, Discourse understanding, Grammar induction, Probabilistic language processing, Probabilistic language models

Text Books

Reference Books

Lab Practice - I (404186)

CN and MWE

Teaching Scheme:
Practical: 4 Hrs/week

Examination Scheme:
OR: 50Marks
TW: 50Marks

Computer Networks

List of the Experiments (Minimum 8 experiments are to be performed):
1. Implementation of LAN using suitable multiuser Windows operating System and demonstrating client-server and peer to peer mode of configuration.
2. Installation and configuration of Web server.
3. Installation and configuration of FTP Server.
4. Study of DNS, SMTP & POP3 Determine the local host address, Ping to a host using its NetBIOS name Add IP addresses/host name mappings to the local host file Configure DNS service on Windows 2000 server Use Domain Name Service to resolve hostnames into IP addresses. Interact with an Email server using SMTP and POP3 protocols commands.
5. Socket Programming for client/Server application using Linux OS.
6. Installation and configuration of Telnet server for Telnet communication.
7. Installation and configuration of Proxy server.
8. Installation and configuration of DHCP server.
9. Study of IP Addresses subnetting and CIDR
11. Study of network monitoring tool/software.
12. Configuration of router & study of routing between LAN’s
13. Simulating LAN or WAN using suitable network simulator.
14. Write a program for Encryption and Decryption
15. Write a program for implementation of Shortest Path algorithm.
16. Simulating LAN or WAN using suitable network simulator.
17. Study of wireless LANs (Demonstrating Data communication with Wi-Fi, Bluetooth networking etc).

Microwave Engineering

List of the Experiments (Minimum 8 experiments are to be performed):
1. Study of microwave components and equipments.
2. Reflex Klystron as a Microwave source in laboratory and plot its mode characteristics.
3. Measurement of the free space wavelength of the microwave (for TE 10 mode) with the help of the X-band microwave test bench and verify with its theoretical calculation.
4. Study of Gunn Diode & PIN Modulator as a Microwave source. Plot the V-I characteristics.
5. Verification of Port Characteristics of Microwave Tees (E, H, E-H Planes).
7. Verification of Port Characteristics of Isolator and Circulator. Also calculation of insertion loss and isolation in dB.
8. Study of slotted section with probe carriage. Measure the VSWR for various values of terminating impedances (open/short/matched termination).
9. Study the Network Analyzer, Carry out the measurements of s-parameter measurement for the various microstrip components.
10. Explain in detail the concept of RF power measurement. Carry out the RF power measurement using microwave bench
11. To test and verify Microwave Integrated Circuits using Microstrip trainer kit and finds parameters, and plot the frequency response.
Lab Practice - II (404187)

VLSI and Elective I

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical: 4 Hrs/week</td>
<td>PR: 50Marks</td>
</tr>
<tr>
<td></td>
<td>TW: 50Marks</td>
</tr>
</tbody>
</table>

VLSI

List of Experiments:

A. To write VHDL code, simulate with test bench, synthesis, implement on PLD.

[Any 4].

1. 4 bit ALU for add, subtract, AND, NAND, XOR, XNOR, OR, & ALU pass.
2. Universal shift register with mode selection input for SISO, SIPO, PISO, & PIPO modes.
3. FIFO memory.
4. LCD interface.

B. To prepare CMOS layout in selected technology, simulate with and without capacitive load, comment on rise, and fall times.

1. Inverter, NAND, NOR gates, Half Adder
2. 2:1 Multiplexer using logic gates and transmission gates.
4. D flip-flop.

Elective I

Experiments to be chosen based on Elective I (Minimum 8 experiments are to be performed)
Project Phase-I (404188)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial: 2Hrs/week</td>
<td>TW: 50Marks</td>
</tr>
</tbody>
</table>

Note:

1. Term work assessment is based on the project topic. It consists of Literature Survey and basic project work. The abstract of the project should be submitted before Term work assessment.

2. The report consists of the Literature Survey, basic project work and the size of the report should be maximum of 40 pages.

3. The examination is conducted by two examiners (internal and external) appointed by the university. The examiners appointed must have minimum 5 years of experience with UG qualification or 2 years with PG qualification.

4. The assessment is based on Innovative Idea, Depth of understanding, Applications, Individual contributions, presentation, and the grade given by the internal guide based on the work carried out in a semester.

5. A certified copy of report is required to be presented to external examiner at the time of final examination.
Mobile Communication (404189)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 4 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To learn and understand the basic principles of Telecommunication switching, traffic and networks
- To learn and understand basic concepts of cellular system, wireless propagation and the techniques used to maximize the capacity of cellular network.
- To learn and understand architecture of GSM and CDMA system.
- To understand mobile management, voice signal processing and coding in GSM and CDMA system.

Course Outcomes:
After successfully completing the course students will be able to:
- Explain and apply the concepts telecommunication switching, traffic and networks
- Analyze the telecommunication traffic.
- Analyze radio channel and cellular capacity.
- Explain and apply concepts of GSM and CDMA system.

Unit I: Telecommunication Switching & Traffic (8L)

Unit II: Switching Networks and Signaling (8L)
Single Stage Networks, Gradings, Link Systems, Grades of service of link systems. Time Division Switching: Space and time switching, Time division switching networks, Synchronization, Call processing Functions, Common Control, Reliability, Availability and Security. Signaling: Customer line signaling, FDM carrier systems, PCM signaling, Inter-register signaling, Common channel signaling principles, CCITT signaling No. 6, CCITT signaling No. 7, Digital customer line signaling.
Unit III: Cellular Concepts

Unit IV: First and Second Generation Mobile Systems

| 6L | First Generation Cellular Systems, AMPS, GSM Cellular Telephony: Introduction, Basic GSM Architecture, Basic radio transmission parameters in GSM system, Logical Channels, GSM time hierarchy, GSM burst structure, Description of call setup procedure, Handover, Modifications and derivatives of GSM. |

Unit V: GSM Services

| 8L | GSM Physical layer: Speech Coding and decoding, GMSK modulation, Data transmission in GSM: Data Services, SMS, HSCSD, GPRS, EDGE. |

Unit VI: CDMA Based Mobile Systems

Text Books

1. J. E. Flood, “Telecommunications Switching, Traffic and Networks”, Pearson Education

Reference Books

3. ThiagarajanVishwanathan, “Telecommunication Switching Systems and Networks”; PHI Publications
5. Vijay K Garg, Joseph E Wilkes, “Principles and Applications of GSM” Pearson Education
Broadband Communication Systems (404190)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To understand the three primary components of a fiber-optic communication system.
- To understand the system design issues and the role of WDM components in advanced light wave systems.
- To understand the basics of orbital mechanics and the look angles from ground stations to the satellite.
- To apply their subject understanding in Link Design.

Course Outcomes:
After successfully completing the course students will be able to:
- Carry out Link power budget and Rise Time Budget by proper selection of components and check its viability.
- Carry out Satellite Link design for Up Link and Down Link.

UNIT I: Light wave System Components 6L

UNIT II: Lightwave Systems 6L

UNIT III: Multichannel Systems 6L

Overview of WDM, WDM Components: 2 x 2 Fiber Coupler, Optical Isolators and Circulators, Multiplexers and De-multiplexers, Fiber Bragg Grating, FBG applications for multiplexing and De-multiplexing function, Diffraction Gratings, Overview of Optical Amplifiers: SOA, EDFA and RFA in brief.
UNIT IV: Orbital Mechanics and Launchers 6L

History of Satellite Communication, Orbital Mechanics, Look angle determination, Orbital perturbations, Orbital determination, Launchers and Launch Vehicles, Orbital effects in communication system performance.

UNIT V: Satellites 6L

Satellite Subsystems, Attitude and control systems (AOCS), Telemetry, Tracking, Command and Monitoring, Power systems, Communication subsystems, Satellite antennas, Equipment Reliability and space qualification.

UNIT VI: Satellite Communication Link Design 6L

Text Books

Reference Books

Speech and Audio Signal Processing (404191)

Teaching Scheme:
Lectures: 3 Hrs/Week

Examination Scheme:
In Semester Assessment:
Phase I: 30
End Semester Examination:
Phase II: 70

Course Objectives:
- To understand basic concepts and methodologies for the analysis and modeling of speech signal.
- To characterize the speech signal as generated by a speech production model.
- To understand the mechanism of speech and audio perception.
- To understand the motivation of short-term analysis of speech and audio.
- To perform the analysis of speech signal using LPC.
- To extract the information of the speech or audio signals in terms of cepstral features.
- To provide a foundation for developing applications in this field.

Course Outcomes:
After successfully completing the course, students will be able to:
- Design and implement algorithms for processing speech and audio signals considering the properties of acoustic signals and human hearing.
- Analyze speech signal to extract the characteristic of vocal tract (formants) and vocal cords (pitch).
- Write a program for extracting LPC Parameters using Levinson Durbin algorithm.
- Formulate and design a system for speech recognition and speaker recognition.

Unit I: Fundamentals of speech production (6L)
Anatomy and physiology of speech production, Human speech production mechanism, LTI model for speech production, Nature of speech signal, linear time varying model, articulatory phonetics, acoustic phonetics, Voiced and Unvoiced speech.

Unit II: Human auditory system (6L)
Human auditory system, simplified model of cochlea. Sound pressure level and loudness. Sound intensity and Decibel sound levels. Concept of critical band and introduction to auditory system as a filter bank, Uniform, non uniform filter bank, mel scale and bark scale. Speech perception: vowel perception.

Unit III: Time and frequency domain methods for audio processing (6L)

Unit IV: Linear prediction analysis

Unit V: Cepstral Analysis

Unit VI: Speech and Audio processing applications

Text Books:
2. Ben Gold and Nelson Morgan, “Speech and audio signal processing” Wiley

Reference Books:
1. L. R. Rabiner and S.W. Schafer, “Digital processing of speech signals” Pearson Education.
3. Dr. ShailaApte, “Speech and audio processing”, Wiley India Publication
List of Experiments (Minimum 8 experiments are to be performed):

NOTE: To perform the experiments software like MATLAB, SCILAB or any appropriate open source software can be used. For analysis of speech signals tools like PRAAT, Audacity can be used. Open source software is encouraged.

1. Record speech signal and find Energy and ZCR for different frame rates and comment on the result.
2. Record different vowels as /a/, /e/, /i/, /o/ etc. and extract the pitch as well as first three formant frequencies. Perform similar analysis for different types of unvoiced sounds and comment on the result.
3. Write a program to identify voiced, unvoiced and silence regions of the speech signal.
4. Record a speech signal and perform the spectrographic analysis of the signal using wideband and narrowband spectrogram. Comment on narrowband and wide band spectrogram.
5. Write a program for extracting pitch period for a voiced part of the speech signal using autocorrelation.
6. Write a program to design a Mel filter bank and using this filter bank write a program to extract MFCC features.
7. Write a program to perform the cepstral analysis of speech signal and detect the pitch from the voiced part using cepstrum analysis.
8. Write a program to find LPC coefficients using Levinson Durbin algorithm.
9. Write a program to enhance the noisy speech signal using spectral subtraction method.
10. Write a program to extract frequency domain audio features like SC, SF and Spectral roll off.
RF Circuit Design (404191)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To study RF issues related to active and passive components.
- To study circuit design aspects at RF.
- To learn design and modeling of circuits at RF.

Course Outcomes:
After successfully completion of the course students will be able to -
- Understand behavior of passive components at high frequency and modeling of HF circuit.
- Design HF amplifiers with gain bandwidth parameters.
- Understand Mixer types and characteristics.
- Gain the knowledge about PLLs and Oscillators with respect to their circuit topologies.

Unit I: RF Behavior of Passive Components 6L

Unit II: Bandwidth Estimation 6L
Open Circuit Time Constant Method: Observations & Interpretations, Accuracy of OC\(\tau\)s, Considerations, Design examples. Short Circuit Time Constant Method:Background,Observations & Interpretations, Accuracy of SC\(\tau\)s, Considerations. Delay of a system in cascade, Rise time of systems in cascade, Relation Between Rise Time and Bandwidth.

Unit III: High Frequency Amplifier Design 6L
considerations. Stabilization methods.

Unit IV: Low Noise Amplifier Design

Unit V: Oscillators

Unit VI: Mixers

Text Books

Reference Books

List of Experiments:

1. To plot frequency response of the impedance magnitude of series and parallel LC circuits.
2. To plot the resonant frequency behavior of parallel LC circuit, as a function of resistance R.
3. To determine stability regions of the device and sketch them in the Smith Chart. Assume suitable parameters.
4. To design, prepare layout and simulate CMOS amplifier for given voltage gain and bandwidth.
5. To design, prepare layout and simulate CMOS Colpitt oscillator.
6. To design, prepare layout and simulate CMOS mixer.
7. To design, prepare layout and simulate CMOS LNA.
8. To design, prepare layout and simulate double balance mixer.
9. To design, prepare layout and simulate diode Ring mixer.
10. To design, prepare layout and simulate local oscillator.
Audio Video Engineering(404191)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- After learning AVE course, students will get benefit to learn and understand the working of real life video system and the different elements of video system plus the encoding/decoding techniques.
- The learners will be groomed up to understand different channel allocations, difference between various systems present in this world, their transmission and reception techniques.
- Students will get insight on functioning of individual blocks, different standards of compression and they will be acquainted with different types of analog, digital TV and HDTV systems.
- The students will get overview of fundamentals of Audio systems and basics Acoustics.

Course Outcomes:
- To study the analysis and synthesis of TV Pictures, Composite Video Signal, Receiver, Picture Tubes and Television Camera Tubes.
- To study the various Colour Television systems with a greater emphasis on television standards.
- To study the advanced topics in Digital Television and High Definition Television.
- To study audio recording systems such CD/DVD recording, Audio Standards, and Acoustics principles.

Unit I: Fundamentals of Colour Television 8L
- Color TV systems, fundamentals, mixing of colours, colour perception, chromaticity diagram.
- NTSC, PAL, SECAM systems, colour TV transmitter, (high level, low level), colour TV receivers, remote control. Fault finding and servicing equipments like Wobbuloscope, TV Pattern Generator, and Field Strength meter.

Unit II: Digital TV and Display Devices 6L
- Introduction to Digital TV, Digital TV signals and parameters, Digital TV Transmitters, MAC
signals, advanced MAC signal transmission, Digital TV receivers, Basic principles of Digital Video compression techniques, MPEG Standards. Digital TV recording techniques, Display devices: LED, LCD, TFT, Plasma,

<table>
<thead>
<tr>
<th>Unit III: HDTV</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDTV standards and systems, HDTV transmitter and receiver/encoder, Digital TV satellite Systems, video on demand, CCTV, CATV, direct to home TV, set top box with recording facility, conditional access system (CAS), 3D TV systems, Digital broadcasting, case study (Cricket match, Marathon, Football match).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV: Advanced TV Systems</th>
<th>8L</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Audio and Video, IPTV systems, Mobile TV, Video transmission in 3G mobile System, IPod(MPEG4 Video player), Digital Video Recorders, Personal Video Recorders, Wi-Fi Audio / Video Transmitter and Receivers. Video Projectors, HD Video projectors, Video Intercom systems/ Video door phones.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit V: Fundamentals of Audio-Video Recording</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of sound recording & reproduction, optical recording, CD recording, audio standards. Digital Sound Recording, CD/ DVD player, MP3 player, Blue Ray DVD Players, MPEG, MP3 Player.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit VI: Fundamentals of Acoustics</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio acoustics & reverberation, P.A. system for auditorium, acoustic chambers, Cordless microphone system, special types of speakers & microphones, Digital Radio Receiver Satellite radio reception.</td>
<td></td>
</tr>
</tbody>
</table>

Text Books

2. Video Demisified, Kelth jack, Penram International Publication.
3. Audio Video Systems, R.G. Gupta, TMH Publication

Reference Books

List of Experiments (Minimum 8 experiments are to be performed).

1. Voltage and waveform analysis for color TV.
2. Study of direct to home TV and set top box.
3. Study Wi-Fi TV / IPTV system
5. Study of HDTV
6. Study of Digital TV.
7. Simulation of video, Audio and Image compressing techniques (Software Assignments)
8. Study of Audio system: CD players and MP3 player.
9. Study of PA system with chord less microphone
10. Directivity pattern of Microphones / Loud speakers
11. Visit to TV transmitter/ Digital TV Studio/ All India Radio / TV Manufacturing factory
SOFT COMPUTING TECHNIQUES (404191)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td>Phase I: 30</td>
</tr>
<tr>
<td>End Semester Examination:</td>
</tr>
<tr>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- Introduce a relatively new computing paradigm for creating intelligent machines useful for solving complex real world problems.
- Insight into the tools that make up the soft computing technique: fuzzy logic, artificial neural networks and hybrid system techniques.
- To create awareness of the application areas of soft computing technique.
- Provide alternative solutions to the conventional problem solving techniques in image/signal processing, pattern recognition/classification, control system.

Course Outcomes:
Having successfully completing the course students will be able to:
- use a new tool/tools to solve a wide variety of real world problems
- find an alternate solution, which may offer more adaptability, resilience and optimization
- Identify the suitable antenna for a given communication system
- Gain knowledge of soft computing domain which opens up a whole new career option
- Tackle real world research problems

Unit I: Artificial Neural Network - I

- Biological neuron, Artificial neuron model, concept of bias and threshold, McCulloch- Pitts Neuron Model, implementation of logical AND, OR, XOR functions
- Soft Topologies of neural networks, learning paradigms: supervised, unsupervised, reinforcement, Linear neuron model:
 - concept of error energy, gradient descent algorithm and application of linear neuron for linear regression
 - Activation functions: binary, bipolar (linear, signum, log sigmoid, tan sigmoid)
- Learning mechanisms: Hebbian, Delta Rule, Perceptron and its limitations

Unit II: Artificial Neural Network-II

- Multilayer perceptron (MLP) and back propagation algorithm
- Application of MLP for classification and regression
- Self-organizing Feature Maps, k-means clustering
- Learning vector quantization
- Radial Basis Function networks: Cover’s theorem, mapping functions
(Gaussian, Multi-quadrics, Inverse multiquadrics, Application of RBFN for classification and regression o Hopfield network, associative memories.

Unit III : Fuzzy Logic -I
Concept of Fuzzy number, fuzzy set theory(continuous, discrete) o Operations on fuzzy sets, Fuzzy membership functions (core ,boundary ,support) , primary and composite linguistic terms , Concept of fuzzy relation, composition operation (T-norm,T-conorm) o Fuzzy if-then rules.

Unit IV : Fuzzy Logic -II

Unit V : Fuzzy Control Systems
CONTROL SYSTEM DESIGN PROBLEM 1.5, Control (Decision) Surface, Assumptions in a Fuzzy Control System Design V, Fuzzy Logic Controllers Soft o Comparison with traditional PID control, advantages of FLC, Architecture of a FLC: Mamdani Type , Example Aircraft landing control problem.

Unit VI : Adaptive Neuro-Fuzzy Inference Systems(ANFIS)
ANFIS architecture, Hybrid Learning Algorithm, Advantages and Limitations of ANFIS Application of ANFIS/CANFIS for regression

Text Books

Reference Books

Practical Sessions: (Use MATLAB / OCTAVE / SCILAB / any appropriate open source software.) (any 8 experiments)

1. Implement simple logic network using MP neuron model
2. Implement a simple linear regressor with a single neuron model
3. Implement and test MLP trained with back-propagation algorithm
4. Implement and test RBF network
5. Implement SOFM for character recognition
6. Implement fuzzy membership functions (triangular, trapezoidal, gbell, PI, Gamma, Gaussian)
7. Implement defuzzification (Max-membership principle, Centroid method, Weighted average method)
8. Implement FIS with Mamdani inferencing mechanism
9. A small project: may include classification or regression problem, using any soft computing technique studied earlier
Biomedical Signal Processing (404192)

Teaching Scheme:
Lectures: 3 Hrs/ Week

Examination Scheme:
- In Semester Assessment:
 - Phase I: 30
- End Semester Examination:
 - Phase II: 70

Course Objectives:
1. To understand the basic signals in the field of biomedical.
2. To study origins and characteristics of some of the most commonly used biomedical signals, including ECG, EEG, evoked potentials, and EMG.
3. To understand Sources and characteristics of noise and artifacts in bio signals.
4. To understand use of bio signals in diagnosis, patient monitoring and physiological investigation.
5. To explore research domain in biomedical signal processing.
6. To explore application of established engineering methods to complex biomedical signals problems.

Course Outcomes:
After successfully completing the course students will be able to:
- The student will be able to model a biomedical system.
- The student will be able to understand various methods of acquiring bio signals.
- The student will be able to understand various sources of bio signal distortions and its remedial techniques.
- The students will be able to analyze ECG and EEG signal with characteristic feature points.
- The student will have a basic understanding of diagnosing bio-signals and classifying them.

Unit I: Biomedical Signals 6L

Unit II: Cardio Vascular and Nervous System 6L
- Cardio Vascular System: Cardiovascular system, Coronary and Peripheral Circulation, Electrical
Activity of the heart, Lead configurations, ECG data acquisition, ECG recorder, Concept of Blood Pressure Measurement, Cardiac output, Heart Sounds.

<table>
<thead>
<tr>
<th>Unit III: Analysis of Electrical Activity of Heart</th>
<th>6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit IV: Analysis of Electrical Activity of Brain</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroencephalogram – Structure of brain, EEG signal acquisition, 10-20 electrode placement, EEG rhythms & waveform - categorization of EEG activity - recording techniques - EEG applications- Epilepsy, sleep disorders, brain computer interface. Use of Fourier Transform in EEG Signal Analysis.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit V: Analog Signal Processing</th>
<th>6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit VI: Digital signal Processing</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics, frequency domain representation; Stationary and non-stationary bio-signals, waveform detection, Sampling Theory, Finite data considerations (Edge effects), Z Transform, FIR and IIR filters specific to event detection of ECG. Computation of diagnostic signal parameters of ECG like Heart rate and QRS detection using Multivariate analysis like PCA and ICA.</td>
<td></td>
</tr>
</tbody>
</table>

Text Books
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher</th>
<th>Location</th>
<th>Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Sörnmo</td>
<td>“Bioelectrical Signal Processing in Cardiac & Neurological Applications”</td>
<td>Elsevier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nano Electronics and MEMS(404192)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase II: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To understand the processes in Nano electronic manufacturing.
- To understand the construction, characteristics and operation of Nano electronic devices.
- To get acquainted with MEMS technology.
- To gain the concepts of MEMS sensors and measurement methods.

Course Outcomes:
After successfully completing the course students will,
- Gain knowledge of Nano electronics material and manufacturing of Nano devices.
- Be introduced to MEMS and its sensors and actuators.
- Understand various measuring methods and tools.

Unit I: Introduction to materials in Nano Electronics 6L
Band structures in Silicon, Historical development and basic concepts of crystal structure, defects, crystal growth and wafer fabrication, crystal planes and orientation. Modern CMOS technology, construction of MOS Field Effect Transistor, Electrical characterization: IV/CV characterization, temperature dependent characterization.

Unit II: Semiconductor Nano Electronic manufacturing 6L
Basic understanding of contaminations, Levels of contaminations, Wafer cleaning methods, Lithography: basic concepts of optics, photoresists, wafer exposure systems, methods and equipment. Thermal Oxidation: formations of Si and SiO2 interface, types of thermal oxidations and their comparisons. Dopant Diffusion and Ion implantation fundamentals, Thin film deposition, sputtering methods and types, etching process and types.

Unit III: Nano Electronic Devices 6L
Single Electron devices and Transistors, Quantum particle, Quantum Dot, Logic circuits using quantum dots, nanowires construction and applications, FinFETs, construction of FinFET, properties of FinFETs.

Unit IV: Introduction to MEMS 6L
Intrinsic characteristics of MEMS, miniaturization, Sensors and actuators, sensor noise and design complexity, packaging and integration, stress and strain, intrinsic stress, torsion deflections, types of beams and deflection of beams.

<table>
<thead>
<tr>
<th>Unit V: MEMS based sensors and actuators</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic sensors and Actuators, Thermal sensing and actuation, piezoresistive sensing and actuation, Magnetic actuation. Comparison of major sensing and actuation methods. Case studies of selected MEMS: Acceleration sensors, gyros etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit VI: Measurements methods and tools</th>
<th>6L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Text Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. George W Hanson, Fundamentals of Nanoelectronics, Pearson education</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minhang Bao, Analysis and Design Principles of MEMS Devices, Elsevier</td>
</tr>
</tbody>
</table>
Detection and Estimation Theory (404192)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/ Week</td>
<td>In Semester Assessment:</td>
</tr>
<tr>
<td></td>
<td>Phase I: 30</td>
</tr>
<tr>
<td></td>
<td>End Semester Examination:</td>
</tr>
<tr>
<td></td>
<td>Phase III: 70</td>
</tr>
</tbody>
</table>

Course Objectives:
- To understand concepts of statistical decision theory and parameter estimation.
- To study application of detection and estimation theory in filtering, communication and radar.

Course Outcomes:
After successfully completing the course students will be able to
- Apply suitable hypothesis testing criteria for signal detection problems.
- Use parameter estimation in signal processing and communication problems.
- Design a estimator and detector.

Unit I : Statistical Decision Theory
6L

Unit II : Parameter Estimation-I
6L
Introduction, Some Criteria for Good Estimators, Maximum Likelihood Estimation, Generalized Likelihood Ratio Test, Bayes’ Estimation

Unit III : Parameter Estimation-II
6L
Cramer-Rao Inequality, Multiple Parameter Estimation, Best Linear Unbiased Estimator, Least-Square Estimation, Recursive Least-Square Estimator.

Unit IV : Filtering
6L
Introduction, Linear Transformation and Orthogonality Principle, Wiener Filters, Discrete Wiener Filters, Kalman Filter.
<table>
<thead>
<tr>
<th>Unit V : Detection and Parameter Estimation</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Signal Representation, Binary Detection, M-ary Detection, Linear Estimation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit VI : Detection Theory in Radar</th>
<th>6L</th>
</tr>
</thead>
</table>

Text Books

Reference Books

Wireless Networks (404192)

Teaching Scheme:
- Lectures: 3 Hrs/ Week

Examination Scheme:
- In Semester Assessment:
 - Phase I: 30
- End Semester Examination:
 - Phase II: 70

Course Objectives:
- To study the evolving wireless technologies and standards
- To understand the architectures of various access technologies such as 3G, 4G, WiFi etc.
- To understand various protocols and services provided by next generation networks.

Course Outcomes:
After successfully completing the course, the student will be able to
- Keep himself updated on latest wireless technologies and trends in the communication field
- Understand the transmission of voice and data through various networks.

<table>
<thead>
<tr>
<th>Unit I: Introduction to Wireless Networks</th>
<th>7L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit II: WiFi and Next Generation WLAN</th>
<th>7L</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi (802.11), 802.11 Standards, WiFi Protocols, Frequency Allocation, Modulation and Coding Schemes, Network Architecture, Typical WiFi Configurations, Security, 802.11 Services, Hot Spots, Virtual Private Networks (VPNs), Mobile VPN, VPN Types, WiFi Integration with 3G/4G, Benefits of Convergence of WiFi and Wireless Mobile.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III: Third Generation Mobile Services</th>
<th>6L</th>
</tr>
</thead>
</table>
Unit IV: LTE

- LTE Ecosystem, Standards, Radio Spectrum, LTE Architecture, User Equipment (UE), Enhanced Node B (eNodeB), Core Network (EPC), Radio Channel Components, TD-LTE, Multiple Input Multiple Output, LTE Scheduler, Carrier Aggregation, Cell Search, Cell Reselection, Attach and Default Bearer Activation, Handover (X2, S1, Inter-MME), Self-Organizing Networks (SONs), Relay Cells, Heterogeneous Network (HetNET), Remote Radio Heads (RRH), VoLTE, LTE Advanced

Unit V: WiMAX

Unit VI: VOIP

Text Books

Reference Books

Lab Practice - III (404193)

MC & BCS

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical: 4 Hrs/week</td>
<td>OR: 50Marks</td>
</tr>
<tr>
<td></td>
<td>TW: 50Marks</td>
</tr>
</tbody>
</table>

Mobile Communication

List of the Experiments (Minimum 8 experiments are to be performed).

1. Set up and carry out experiment on PSTN TST switch.
2. Set up and carry out experiment on analysis of telecommunication traffic.
3. Simulation of a wireless channel model.
4. Set up and carry out experiment on Mobile phone.
5. Set up and carry out experiment on GSM.
6. Set up and carry out experiment on AT commands.
7. Simulation of Speech coding and decoding.
8. Set up and carry out experiment on GMSK modulation.
9. Set up and carry out experiment on spreading Sequences.
10. Set up and carry out experiment on CDMA.
11. Set up and carry out experiment on 3G Mobile.
12. Set up and carry out experiment on VOIP implementation.

Broadband Communication Systems

List of the Experiments (Minimum 8 experiments are to be performed).

1. Estimation of Numerical aperture of fiber
2. Plot the characteristics of various sources and detectors
3. Measure attenuation of MMSI and SMSI fiber and comment on the result based on attenuation due to increase in length as well as loss due to bend
4. Set up a digital link and analyze.
5. Tutorial on Power budget and time budget analysis of optical fiber system.
6. Establishing a direct communication link between Uplink Transmitter and Downlink Receiver using tone signal.
7. To set up an Active Satellite link and demonstrate Link Fail Operation
8. To establish an AUDIO-VIDEO satellite link between Transmitter and Receiver
9. To communicate VOICE signal through satellite link
10. To transmit and receive three separate signals (Audio, Video, Tone) simultaneously through satellite link
11. To transmit and receive PC data through satellite link
12. Tutorial on satellite link design
13. Students, as a part of their term work, should visit satellite earth station and submit a report of visit. (Optional)
Lab Practice - IV (404194)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical: 2Hrs/week</td>
<td>PR: 50Marks</td>
</tr>
<tr>
<td></td>
<td>TW:50Marks</td>
</tr>
</tbody>
</table>

Elective III

Experiments to be chosen based on Elective III. *(Minimum 8 experiments are to be performed).*

Project Phase-II (404195)

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial: 6Hrs/week</td>
<td>TW:100 Marks</td>
</tr>
<tr>
<td></td>
<td>OR: 50 Marks</td>
</tr>
</tbody>
</table>

1. **Group Size**
 The student will carry the project work individually or by a group of students. Optimum group size is in 3 students. However, if project complexity demands a maximum group size of 4 students, the committee should be convinced about such complexity and scope of the work.

2. **Selection and approval of topic**
 Topic should be related to real life application in the field of Electronics and Telecommunication OR
 Investigation of the latest development in a specific field of Electronics or Communication or Signal Processing OR
 The investigation of practical problem in manufacture and / or testing of electronics or communication equipment OR
 The Microprocessor / Microcontroller based applications project is preferable. OR
 Software development project related to VHDL, Communication, Instrumentation, Signal Processing and Agriculture Engineering with the justification for techniques used / implemented is accepted. OR
 Interdisciplinary projects should be encouraged. The examination will be conducted independently in respective departments.
3. **Note:**
The group should maintain a logbook of activities. It should have entries related to the work done, problems faced, solution evolved etc., duly signed by internal and external guides. Project report must be submitted in the prescribed format only. No variation in the format will be accepted. One guide will be assigned at the most 3 project groups.