Savitribai Phule Pune University

(Formerly University of Pune)

Department of Technology

Board of Studies Civil and Environmental Technology (CE)

STRUCTURE OF ONE YEAR FULL TIME POST GRADUATE DIPLOMA IN

Water Technologies & Management (PGDWTM)

Proposed Framework of Syllabus for PGD in Water Technologies & Management

SEMESTER I

Course No.	Course Title	Credits
	SEMESTER I	
WTM-01	Induction + Introduction	1
WTM -02	Unit Operations in Water Treatment	2
WTM -03	Conventional Waste water Treatment	3
WTM -04	Resource Oriented Wastewater Treatment and Sanitation	3
WTM -05	Waste-Water Treatment Processes and Plant Design	3
	Semester Credits	12

SEMESTER II

Course No.	Course Title	Credits
SEMESTER II		
WTM-06	Water Transport Distribution	3
WTM -07	Data Analytics And GIS For Water Management	3
WTM -08	Advanced Water Transport And Distribution	3

WTM -09	Drought & Flood Management And Introduction To Reservoir Operations	3
WTM -10	Assignment Based Field Work	4
WTM -11	In ternship At The Host Company	12
	Semester Credits	28

SUBJECT-WISE DETAILED SYLLABUS

SEMESTER –I

WTM-01	Induction + Introduction	Lectures
	 Objectives: Describe the various concepts in civil and environmental engineering Understand the role and responsibilities of various key persons involved in infrastructure development Understand the need and stages involved in formulation of infrastructure project from concept to completion Various norms and Government clearances require for th projects Understand the water infrastructure, Hydrological cycle, concept of water management Impact of rapid urbanization on water sector Understand the Government of India initiative such as SMART city mission, and other mission for the improvement of urban infrastructure and other aspects of urban development like Swachha bharat Mission etc Understand the details of guidelines as per government of India by adopting use of CPHEEO Manual on water and sanitation 	
1.	 Components of Urban Infrastructure, SMART cities, SMART villages – Special emphasis on water infrastructure Introduction to Urban Development Urbanization in India Patterns of Urbanization Growth of Cities Causes of Urbanization 	

	The cost of Urbanization
	The prospect of Urbanization
	Growth Trends
	Understanding Urbanization
	Resources for Urbanization
	Urban Planning & Management Crowth of Urban Dopulation
	Growth of Urban Population The exectic protection
	The spatial pattern of Urbanization
	Problems of Metropolitan cities
	Water issues in India
2.	Current plans and future projections for SMART cities and SMART villages.
	 The Smart Cities Mission is an innovative and new initiative by the
	Government of India to drive economic growth and improve the
	quality of life of people by enabling local development and
	harnessing technology as a means to create smart outcomes for
	citizens. This will cover the GoI guideline from the concept to
	implementation of mission and funding pattern for various sectors
	under SMART City Mission. The assessment criteria for the
	selection, during implementation and socio-economic-cultural
	impact of the development.
	 The Adarsha Gram yojana – SMART Village is planned by GoI for
	the upliftment of village environment and implementation of IEC
	components for self-sufficiency within village. The betterment of
	local infrastructure and facilities to be provided at village level
3.	Introduction of Regulatory Authorities (e.g – CPHEEO and other policy
5.	framework)
	Government of India on water supply and sanitation and it's use for water
	sector
	This manual has been developed by the Central Public Health and
	Environmental Engineering Organisation (CPHEEO), a department under
	the Ministry of Housing and Urban Affairs (MoHUA) and serves as a
	standard guide in public health engineering by providing a code of day to
	day practice for public health engineers to follow. All the water and
	sanitation projects need to to follow the guidelines as stipulated by
	CPHEEO-Gol for every project within India.
	There are various manual published by CPHEEO. The introduction and
	understanding of the relevant manual is to be discussed in this section.
4.	Changes in S.E.P.T. and its impact on urban growth from the context of
4.	Water and Sanitation. (S E P T – Social-Economical-Political-
	Technological)-

5	Heat Islands Cause and Effect, Water footprint, Rain Water		
	Management, Urban Farming and Circular Economy		
	This is to be covered in second semester in Assignment based field work		
6	Basics of Hydrology and Water Cycle –		
	Objectives and Policies		
	Understanding the water infrastructure comprises of various elements		
	and it's impact on environment.		
	 Hydrological cycle, its processes and storages – 		
	I. The solar system and the formation of earth		
	II. Radioactive Heat Production through Time		
	III. Earth's atmosphere compare to its sister		
	IV. Earth's Atmosphere - composition and evolution		
	V. The Hydrosphere		
	VI. Vertical Distribution of Ground water		
	VII. Water Shed/ Water Budget		
7	Basics of Chemistry and Microbiology related to Water -		
	Important Concepts in Chemistry related to water		
	This aspect to cover the water chemistry and composition which resulting		
	water into acids, alcohols, and many salts. Water displays capillary action		
	because of its strong adhesive and cohesive forces. Hydrogen bonding		
	between water molecules also gives it high surface tension which need to		
	discuss with the relevant examples.		
	Contaminants of water & constituents of wastes & cleansers:		
	Concept of contamination and its significance on various elements, human,		
	cattle, materials, treatment process and other elements in the environment.		
	Various constituents polluting the water source especially from domestic,		
	industrial and manmade activities and its effect. The effect of such		
	pollutants on the selection of suitable treatment technology		
	• Biochemical processes in waste recycling:		
	Understanding the concept of Biological, Chemical and Biochemical- combination of both biological and chemical treatment for the waste treatment.		
	Understanding Aerobic and Anaerobic treatment. Understanding bacteria, nematodes, or other small organisms to break down organic wastes using normal cellular processes. System of treatment for the decomposition and efficient disposal of waste		
WTM-02	water. Unit Operations in Water Treatment		
VV I IVI-02			
	Objectives		

	 Describe the theoretical principles of the unit processes: coagulation, filtration, sedimentation and dissolved air flotation in conventional surface water treatment Apply theoretical principles to practical aspects of coagulation, filtration, sedimentation, and dissolved air flotation Determine design parameters for coagulation, filtration, sedimentation, and dissolved air flotatory experiments Design a sedimentation tank Be able to judge the performance of the unit processes: coagulation, filtration, sedimentation, and dissolved air flotation
1.	Aeration – I. Purposes of Aeration II. Aeration Process III. Requirements & Pre- requisites IV. Mathematics involved in Aeration V. Types of Aeration systems
2.	 V. Types of Aeration systems Coagulation – Objective- Theory of coagulation and flocculation processes: colloidal stability and mechanisms of destabilization, rapid and slow mixing, coagulation in practice and natural coagulants. Details- Coagulation Factors affecting coagulation Coagulation & Flocculation Clariflocculation Theory Clariflocculation – Design Criteria Commonly used coagulant
3.	Sedimentation – Objective: Hydrodynamic principles of sedimentation and flotation, Stokes Law, principles of discrete settling, flocculent settling and hindered settling. Horizontal and vertical continuous flow basins, settling tanks, shape of inlets and outlets. Design of a rectangular sedimentation tank Details- • What is sedimentation • Various zones of settling • Settling Velocities of particles • Factors affecting sedimentation • Settling in sedimentation • Settling nake in tank • Settling nake • What is sedimentation • Various zones of settling • Settling Velocities of particles • Factors affecting sedimentation • Settling in sedimentation tank – Types – Based on Flow Type, Based upon shape, • Settling Tank Efficiency

	Design of sedimentation tank	
4	Dissolved Air Floatation –	
	Objectives:	
	Key design parameters, Henry's law, nucleus theory, Stokes law, rate of	
	rise theory, hydraulic loading rate, solids loading.	
	Concept-	
	It is a water treatment process that clarifies wastewaters or other waters	
	by the removal of suspended matter such as oil or solids. The removal is	
	achieved by dissolving air in the water or wastewater under pressure and	
	then releasing the air at atmospheric pressure in a flotation tank basin.	
5	Filtration –	
	Objectives:	
	General introduction to various types of filtration systems, Mechanical	
	filtration, Slow sand filtration, Rapid sand filtration (pilot experiments,	
	removal mechanisms, hydraulics, filter elements, rate control,	
	backwashing, multi- layer filtration, application)	
	Concept-	
	Filtration is a process that removes particles from suspension in water.	
	Removal takes place by a number of mechanisms that include straining,	
	flocculation, sedimentation and surface capture. Filters can be categorised	
	by the main method of capture, i.e. exclusion of particles at the surface of	
	the filter media i.e. straining, or deposition within the media i.e. in-depth	
	filtration	
6	Disinfection –	
	Objective: Basic principles of disinfection; chemical disinfection;	
	disinfection by products; ozone disinfection; UV; disinfection	
	Concept- It is a process that eliminates many or all pathogenic	
	microorganisms, except bacterial spores, on inanimate objects The process	
	of addition of chemicals and removal of contaminants, various types of	
	disinfectants, chlorination-pre and post chlorination in the water supply	
	system	
7	Field Trip to conventional water treatment plant/ Assignment –	
WTM-03	Conventional Waste water Treatment	
	Objectives:	
	Critically determine and analyse quality and quantity characteristics	
	of wastewater originating from urban environments as a basis for	
	the design, control and operation of sewage treatment facilities.	
	Discuss the physical, chemical, and biological processes applied for	
	sewage purification and the complex interactions among them	
	 occurring in wastewater treatment systems Apply the knowledge on biological treatment processes and 	
4	- Apply the knowledge on biological treatment processes and	

1.	 Introduction into resource orientation in wastewater treatment and sanitation Objectives: Describe the physical, chemical and microbiological processes occurring in anaerobic reactors and a number of natural systems 	
WTM-04	Resource Oriented Wastewater Treatment and Sanitation	
5.	 Introduction to MBBR, SBR, MBR technologies. Understanding the basic concept of technology involved in MBR,MBBR and SBR Advantages of different types of technology and technical comparison Design philosophy of treatment plants for PST and SST Design of BOD Removal, COD Removal of , TSS Removal of ASP Introduction of SBR/ Major Phases or Processes – Fill, React, Settle, Decent, Idle/ Advantages of SBR/ Disadvantages of SBR 	
3.	Nitrification & Denitrification - Final Settling -	
2.	 Biological Characteristics Primary Treatment Objective- to understand the stages involved in primary treatment along with various units needed for the treatment. 	
	 Composition of sewage Introduction of Sewage Aerobic Decomposition Anaerobic Decomposition Characteristics of Sewage based on – Physical, Chemical, Biological Other contents in sewage – Chloride, Fats, Oils, Greases, Toxic waste, Supllhides, Sulphates, Hydrogen Gas, DO, BOD, COD 	
1.	Wastewater characterisation and sampling -	
	 engineering on the process design and critical assessment of wastewater treatment systems and configurations for the removal of organic matter (as COD) and nutrients (nitrogen and phosphorus) Discuss the principles, fundamentals and applicability of recently developed wastewater treatment processes such as innovative nitrogen removal processes and membrane bioreactors. 	

	Objective- to understand the concept of urine treatment and resource recovery Details- Urine contains 80% of the nitrogen (N) and 45% of the phosphorus	
5.	Urine treatment	
	alleviated by an increase in the number of treatment plants. To tackle this problem; a sustainable, economical and efficient onsite treatment system is an essential and DOSIWAM (Decentralized On-Site Integrated Waste Management) System which is effective for low cost sanitation.	
4.	DOSIWAM/ Malaprabha Digestor Objective- To understand concept of low cost sanitation for rural area. Details- In urban areas, the sewage generation problem will not be	
	They are man-made depressions confined by earthen structures. Wastewater or "influent" enters on one side of the waste stabilization pond and exits on the other side as "effluent", after spending several days in the pond, during which treatment processes take place.	
	In Waste stabilization ponds (WSPs or stabilization ponds or waste stabilization lagoons) designed for waste water treatment to reduce the organic content and remove pathogens from wastewater.	
	To understand the concept of treatment with low cost , less skilled manpower and ample availability of land- suitable types of technology	
3.	energy source, which can be used for electricity and heat production Waste stabilization ponds	
	The organic pollutants are converted by anaerobic micro-organisms to biogas, which contains methane and carbon dioxide. Biogas is a renewable	
	To understand the details of Anaerobic treatment concept of waste water treatment by way of biological treatment without use of oxygen or air.	
2.	maintenance Anaerobic wastewater treatment-	
	Carry out preliminary process design of treatment and reuse systems to assess the needs for capital, land, equipment and operation and	
	• Evaluate the feasibility of the application of the technologies studied in this module in urban settings in the developing world	
	 Evaluate the possibilities for closing cycles of energy, water and nutrients 	
	 Critically reflect on the current sanitation systems encountered in many urban areas and to indicate ways to improve this situation in a sustainable manner; 	

7.	Effluent reuse for agriculture-	
	The use of recycled water for the use of agricultural production and reduce	
	the ground water extraction.	
8.	Algae photo bioreactors	
	For effective utilization of available light source to cultivate phototrophic	
	microorganism to generate biomass from light and carbon di-oxide. The	
	technique used shall be discussed in detail.	
WTM-05	Waste Water Treatment Processes & Plant Design	
	Objectives:	
	• Select the most suitable and cost-effective treatment process	
	technologies, given it's composition and characteristics and taking	
	into account the required standards.	
	• Carryout a preliminary design of a treatment system including	
	engineering process layout, hydraulic profile and process flow	
	diagram	
	 Identify and estimate the construction, operational and 	
	maintenance costs of a treatment plant, and the investments	
	required to secure It's satisfactory operations throughout the	
	expected life span of the system.	
	 Describe the mean and components involved in the project 	
	planning, project management and project administration for	
	design engineering, construction, start-up and operation of the	
	treatment plant.	
1.	Technology selection	
	Technology selection and introduction to desalination and membrane	
	technology. Review of the most commonly applied treatment process	
	technologies. Criteria for selection and guidelines for determination of a	
	suitable treatment process to meet the required standards taking into	
	account local conditions and resources availability.	
2.	Engineering Economics	
	Fundamentals and principles of estimation and engineering economics	
	(such as cash-flow, interest factors, return of investment and benefit-cost	
	analyses, among others).	
	Evaluation, comparison and selection of cost-effective treatment system alternatives.	
	alternatives.	
3.	Estimates & Costing	1
	Fundamentals and principles of costing. Identification and estimation of	
	direct and indirect costs involved in the design, construction, operation	
	and maintenance of treatment systems. (Project) budgeting.	
	Details involved-	
	 Definition of Estimation 	

 Role of different agencies involved – Quantity Surveyor, Estimator, Others Components of Estimates Specifications Scheduled rates Preparation of Estimates – Measurements, Abstract Details involved- Necessity of Costing Different types of costs – Direct cost and indirect cost Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of equipment for monitoring, operation and control. Review of case-studies 		Necessities of Estimates	
OthersOthers• Components of EstimatesSpecifications• SpecificationsScheduled ratesPreparation of Estimates – Measurements, AbstractDetails involved-• Necessity of Costing• Different types of costs – Direct cost and indirect cost• Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost4.Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out.5.Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants.6.Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of			
 Components of Estimates Specifications Scheduled rates Preparation of Estimates – Measurements, Abstract Details involved- Necessity of Costing Different types of costs – Direct cost and indirect cost Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 			
 Specifications Scheduled rates Preparation of Estimates – Measurements, Abstract Details involved- Necessity of Costing Different types of costs – Direct cost and indirect cost Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost			
 Scheduled rates Preparation of Estimates – Measurements, Abstract Details involved- Necessity of Costing Different types of costs – Direct cost and indirect cost Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 			
Preparation of Estimates – Measurements, Abstract Details involved- • Necessity of Costing • Different types of costs – Direct cost and indirect cost • Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost 4. Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. 5. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. 6. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of		·	
Details involved-Image: Necessity of Costing• Different types of costs – Direct cost and indirect cost• Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost4.Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out.5.Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants.6.Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of		Scheduled rates	
 Necessity of Costing Different types of costs – Direct cost and indirect cost Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 		Preparation of Estimates – Measurements, Abstract	
 Different types of costs – Direct cost and indirect cost Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process layout. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 		Details involved-	
 Design cost, Drafting cost, Research & Development cost, Material cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of Design and selection of Migneering of a conventional treatment plant. 		Necessity of Costing	
 cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 		 Different types of costs – Direct cost and indirect cost 	
 cost, Labour cost, Cost of tools & fixtures, Electrical/ Mechanical/ Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 		• Design cost, Drafting cost, Research & Development cost, Material	
Instrumentation/ Automation cost, Land cost, Finance cost, Unforeseen expenses/ Miscellaneous cost4.Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out.5.Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and operation of treatment plants.6.Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of			
Unforeseen expenses/ Miscellaneous cost4.Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out.5.Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants.6.Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of			
 4. Engineering process layouts and process flow diagrams Design and calculation of engineering process layouts and process flow diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. 5. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. 6. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 			
 diagrams for the design and operation of treatment plants. A detailed design exercise will be carried out on a selected treatment process lay-out. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 	4.	Engineering process layouts and process flow diagrams	
design exercise will be carried out on a selected treatment process lay-out.5.Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants.6.Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of		Design and calculation of engineering process layouts and process flow	
 5. Hydraulic design Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. 6. Design and Engineering of waste water treatment system		diagrams for the design and operation of treatment plants. A detailed	
 Calculation and design of hydraulic profiles (based on the behavior and performance of hydraulic structures and elements) for the design and operation of treatment plants. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of 		design exercise will be carried out on a selected treatment process lay-out.	
performance of hydraulic structures and elements) for the design and operation of treatment plants. 6. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of	5.	Hydraulic design	
operation of treatment plants. 6. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of		Calculation and design of hydraulic profiles (based on the behavior and	
6. Design and Engineering of waste water treatment system Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of		performance of hydraulic structures and elements) for the design and	
Preliminary design, including influent characteristics, sizing and dimensioning of a conventional treatment plant. Design and selection of		operation of treatment plants.	
dimensioning of a conventional treatment plant. Design and selection of	6.	Design and Engineering of waste water treatment system	
		Preliminary design, including influent characteristics, sizing and	
equipment for monitoring, operation and control. Review of case-studies		dimensioning of a conventional treatment plant. Design and selection of	
		equipment for monitoring, operation and control. Review of case-studies	
including planning, project management, and project administration of the		including planning, project management, and project administration of the	
construction and operation.		construction and operation.	

SUBJECT-WISE DETAILED SYLLABUS

SEMESTER -II

WTM-06	Water Transport Distribution	Lectures
	 Objectives: Distinguish between different network configurations and supplying schemes; recognise various consumption categories and their growth patterns, including water leakage; define the relation between the main hydraulic parameters Demonstrate understanding of the steady-state hydraulics by 	
	 being able to select appropriate pipe diameters, indicate optimum location of reservoirs and identify pumps capable to supply the demand; Apply the above theoretical knowledge by learning to perform computer-aided hydraulic calculations and predict the consequences of demand growth on the hydraulic performance of particular WTD system Propose preliminary hydraulic design that will integrate 	
	 economic aspects, choose adequate components, and judge technical solutions dealing with the network maintenance, rehabilitation, and expansion; Distinguish between the main components of non-revenue water and methods of leakage assessment, survey, detection and control; 	
	• Understand the basic corrosion mechanisms and suggest the list o preventive and reactive measures	f
1.	Introduction to Water Transport and Distribution – Main objectives and components of WTD systems; water demand categories, patterns, calculation and forecasting; steady state hydraulics of pressurized flows, single pipe calculation, branched and looped networks, pressure driven demand; hydraulics of storage and pumps; hydraulic design: choice of supply scheme, network layouts, design of pumping stations, power requirements and energy consumption; engineering design: choice of pipe materials, valves and other equipment; network construction: pipe laying, testing and disinfection; operation & maintenance: regular & irregular supply, network cleaning and rehabilitation.	
2.	Water Loss Management and Control – Definition of non-revenue water and IWA terminology used in the sector, components of water losses, methods of reducing and controlling real- and apparent network losses; quantification of	

	leakage in distribution systems, leak location and repair techniques,	
	pressure management.	
3.	Corrosion in Water Distribution Networks (removed from IHE Syllabus –	
	but essential for India) –	
	Corrosion of pipe materials, indices of measure, corrosion assessment,	
	prevention and control, optial water composition, principles of water	
	quality modelling of distribution networks, modelling of chlorine residuals.	
WTM-07	quality modeling of distribution networks, modeling of chorne residuals.	
VV 1 IVI-07	Data Analytics And GIS For Water Management	
	Objectives:	
	 The students will be able to explain RS theory and GIS 	
	application, technology, typical applications, and be	
	able to identify and download relevant data and	
	products	
	 The students will be able to pre-process, extract and analysed 	
	common indices, design and collect ground-truth points, and	
	conduct land cover classification	
	 The students will be able to extract biophysical, infrastructure 	
	and management features of the region	
	 The students will be able to assess the various performance 	
	indexes using GIS and remote sensing, interpret them to	
	identify gaps, diagnose water management problems, and	
	attribute to relevant factors for improvements	
	 The students will be able to produce water accounts for a 	
	hydrological system for a given region using GIS and remote	
	sensing information and evaluate the performance of the	
	system.	
	 Setting the context of generating data from various sources 	
	through the cycle of water management	
	 Analysing historical data, understand the changes happening 	
	through the years and develop adaptive solutions for future	
	 Develop the ability to provide meaningful information and 	
	generate the possibility to take informed decisions based on big	
	data generation in water sector.	
	 Scoping of operationalising neural networks in water management 	
	• Develop a smart integrated infrastructure through the tools for data	
1	analysis	
1.	Introduction to GIS and Remote sensing Basics of GIS & RS, introduction to common data portal, satellites,	
	typical application of GIS & RS and existing products, Hands-on	
	exercises on need analysis and acquiring of relevant data.	
2.	Data analysis for land cover classification	
	Overview of the data processing flow, common indices, and classification	
	theory; Ground Truthing methods; Hands-on exercises (1) GT collection, (2)	
	Landsat data pre- processing, extracting common indices, categorize them,	

	and (3) Land cover classification and accuracy assessment. A case study is introduced to which these skills will be applied by the students.	
3.	Mapping existing infrastructure systems Hands-on exercise on mapping infrastructure, land use patterns, water resources, water networks, ground water data for the catchment, integrating the primary data and secondary data	
4.	Data Analytics in GIS and RS for infrastructure development	
	Acquire historical data for catchments, generate data points and source data, generate adaptive tools based on the data being generated through the data points. Develop strategies based on micro data for water management – interlinks for water for irrigation and agriculture and urban / rural development	
5.	GIS & Remote sensing for enhancing performance of water management systems	
	Assessment of the system performance using GIS and remote sensing tools, interpret various performance indicator results to identify gaps, diagnose water management problems, and attribute to relevant factors for improvements	
6.	GIS & Remote Sensing for Water Accounting	
	Theory of producing water accounts for a water management system using remote sensing information is discussed. The knowledge will be applied to the hands-on and form the concluding section of the assignment.	
WTM-08	Advanced Water Transport And Distribution	
	Objectives:	
	 Understand the theory of advanced hydraulic and water quality modelling; apply state-of-the-art network software for assessment of irregular operational scenarios and develop a reliability-based and cost-effective design using computer model. 	
	 Select modern tools for monitoring of operation, and planning of maintenance of WTD systems. Recognise the GIS and remote sensing technologies, 	
	 and familiarise with the GIS-based techniques for sustainable planning and management of WTD systems; Understand the theory of transient flows, and plan the measures to prevent/control water hammer; Distinguish between various sources of water quality problems in distribution networks; understand the basic mechanisms of 	
	biological stability and suggest the list of preventive and reactive measures	

 Setting the context of generating data from various sources through the cycle of water management Analysing historical data, understand the changes happening through the years and develop adaptive solutions for future Develop the ability to provide meaningful information and generate the possibility to take informed decisions based on big data generation in water sector. Scoping of operationalising neural networks in water management Develop a smart integrated infrastructure through the tools for data analysis Advanced Water Distribution Modelling and Data analytics Principles of genetic algorithm; pressure-driven demand calculations; network calibration; failure analysis and calculation of demand losses; economic aspects of capital investments and network operation. Optimization of networks and scoping of introducing neural networks for water management, asset management Advanced O&M Practices in Water Distribution Monitoring of network condition and operation; data collection and management; organisation of maintenance, emergency water supply, asset management plans, water company organisation GIS in Water Distribution The aim of this course is to provide both a solid theoretical understanding and a comprehensive practical introduction of how to use geographic information systems and remote sensing technologies for the analysis and solution of water distribution related problems. The course focuses on the analysis of digital spatial data, preparation for numerical modelling, presentation of modelling results and support to the decision-making projections and coordinate systems, processing of digital geographic information, systems and remote sensing data structures, map projections and coordinate systems, processing data glig geographic information, creation of modelling results and GIS are sunto a modelling package, incorporation of modelling results in G		-	
 Principles of genetic algorithm; pressure-driven demand calculations; network calibration; failure analysis and calculation of demand losses; economic aspects of capital investments and network operation. Optimization of networks and scoping of introducing neural networks for water management, asset management Advanced O&M Practices in Water Distribution Monitoring of network condition and operation; data collection and management; organisation of maintenance, emergency water supply, asset management plans, water company organisation GIS in Water Distribution The aim of this course is to provide both a solid theoretical understanding and a comprehensive practical introduction of how to use geographic information systems and remote sensing technologies for the analysis and solution of water distribution related problems. The course focuses on the analysis of digital spatial data, preparation for numerical modelling, presentation of modelling results and support to the decision- making process. The topics covered in the course include the following: introduction to geographic information systems, and ceremote sensing technologies, active and passive remote sensing, data structures, map projections and coordinate systems, processing of digital geographic information, creation of digital elevation models, visualisation, soil and land use mapping, map algebra, export of GIS layers into a modelling package, incorporation of modelling results in GIS. Introduction to Water Hammer Basic equations and applications; computer modelling: model building, simulations of simple cases (full pump trip, emergency shut down; protection devices: practical methods of surge suppression, direct action, diversionary tactics, choice of protection strategy Water Quality in Distribution Networks Bacterial growth in drinking water, influence of water treatment and distribution on biological stability of drinking water, optimal water 		 the cycle of water management Analysing historical data, understand the changes happening through the years and develop adaptive solutions for future Develop the ability to provide meaningful information and generate the possibility to take informed decisions based on big data generation in water sector. Scoping of operationalising neural networks in water management Develop a smart integrated infrastructure through the tools for data analysis 	
 calculations; network calibration; failure analysis and calculation of demand losses; economic aspects of capital investments and network operation. Optimization of networks and scoping of introducing neural networks for water management, asset management Advanced O&M Practices in Water Distribution Monitoring of network condition and operation; data collection and management; organisation of maintenance, emergency water supply, asset management plans, water company organisation GIS in Water Distribution The aim of this course is to provide both a solid theoretical understanding and a comprehensive practical introduction of how to use geographic information systems and remote sensing technologies for the analysis and solution of water distribution related problems. The course focuses on the analysis of digital spatial data, preparation for numerical modelling, presentation of modelling results and support to the decision-making process. The topics covered in the course include the following: introduction to geographic information systems and remote sensing technologies, active and passive remote sensing, data structures, map projections and coordinate systems, processing of digital geographic information, creation of digital elevation models, visualisation, mapping of water related features, delineation of pressure zone areas, digitisation, soil and land use mapping, map algebra, export of GIS layers into a modelling package, incorporation of modelling results in GIS. Introduction to Water Hammer Basic equations and applications; computer modelling: model building, simulations of simple cases (full pump trip, emergency shut down; protection devices: practical methods of surge suppression, direct action, diversionary tactics, choice of protection strategy Water Quality in Distribution Networks Bacterial growth in drinking water, influence of water treatment and distribution on biologi	1.	Advanced Water Distribution Modelling and Data analytics	
 Advanced O&M Practices in Water Distribution Monitoring of network condition and operation; data collection and management; organisation of maintenance, emergency water supply, asset management plans, water company organisation GIS in Water Distribution		calculations; network calibration; failure analysis and calculation of demand losses; economic aspects of capital investments and network operation. Optimization of networks and scoping of introducing neural	
 Monitoring of network condition and operation; data collection and management; organisation of maintenance, emergency water supply, asset management plans, water company organisation GIS in Water Distribution The aim of this course is to provide both a solid theoretical understanding and a comprehensive practical introduction of how to use geographic information systems and remote sensing technologies for the analysis and solution of water distribution related problems. The course focuses on the analysis of digital spatial data, preparation for numerical modelling, presentation of modelling results and support to the decision- making process. The topics covered in the course include the following: introduction to geographic information systems and remote sensing data structures, map projections and coordinate systems, processing of digital geographic information, creation of digital elevation models, visualisation, mapping of water related features, delineation of pressure zone areas, digitisation, soil and land use mapping, map algebra, export of GIS layers into a modelling package, incorporation of modelling results in GIS. Introduction to Water Hammer Basic equations and applications; computer modelling: model building, simulations of simple cases (full pump trip, emergency shut down; protection devices: practical methods of surge suppression, direct action, diversionary tactics, choice of protection strategy Water Quality in Distribution Networks	2		
 The aim of this course is to provide both a solid theoretical understanding and a comprehensive practical introduction of how to use geographic information systems and remote sensing technologies for the analysis and solution of water distribution related problems. The course focuses on the analysis of digital spatial data, preparation for numerical modelling, presentation of modelling results and support to the decision- making process. The topics covered in the course include the following: introduction to geographic information systems and remote sensing technologies, active and passive remote sensing, data structures, map projections and coordinate systems, processing of digital geographic information, creation of digital elevation models, visualisation, mapping of water related features, delineation of pressure zone areas, digitisation, soil and land use mapping, map algebra, export of GIS layers into a modelling package, incorporation of modelling results in GIS. Introduction to Water Hammer Basic equations and applications; computer modelling: model building, simulations of simple cases (full pump trip, emergency shut down; protection devices: practical methods of surge suppression, direct action, diversionary tactics, choice of protection strategy Water Quality in Distribution Networks Bacterial growth in drinking water, influence of water treatment and distribution on biological stability of drinking water, optimal water 	2.	Monitoring of network condition and operation; data collection and management; organisation of maintenance, emergency water supply, asset	
 and a comprehensive practical introduction of how to use geographic information systems and remote sensing technologies for the analysis and solution of water distribution related problems. The course focuses on the analysis of digital spatial data, preparation for numerical modelling, presentation of modelling results and support to the decision- making process. The topics covered in the course include the following: introduction to geographic information systems and remote sensing technologies, active and passive remote sensing, data structures, map projections and coordinate systems, processing of digital geographic information, creation of digital elevation models, visualisation, mapping of water related features, delineation of pressure zone areas, digitisation, soil and land use mapping, map algebra, export of GIS layers into a modelling package, incorporation of modelling results in GIS. Introduction to Water Hammer Basic equations and applications; computer modelling: model building, simulations of simple cases (full pump trip, emergency shut down; protection devices: practical methods of surge suppression, direct action, diversionary tactics, choice of protection strategy Water Quality in Distribution Networks Bacterial growth in drinking water, influence of water treatment and distribution on biological stability of drinking water, optimal water 	3.	GIS in Water Distribution	
 simulations of simple cases (full pump trip, emergency shut down; protection devices: practical methods of surge suppression, direct action, diversionary tactics, choice of protection strategy 5. Water Quality in Distribution Networks Bacterial growth in drinking water, influence of water treatment and distribution on biological stability of drinking water, optimal water 	4.	and a comprehensive practical introduction of how to use geographic information systems and remote sensing technologies for the analysis and solution of water distribution related problems. The course focuses on the analysis of digital spatial data, preparation for numerical modelling, presentation of modelling results and support to the decision- making process. The topics covered in the course include the following: introduction to geographic information systems and remote sensing technologies, active and passive remote sensing, data structures, map projections and coordinate systems, processing of digital geographic information, creation of digital elevation models, visualisation, mapping of water related features, delineation of pressure zone areas, digitisation, soil and land use mapping, map algebra, export of GIS layers into a modelling package, incorporation of modelling results in GIS. Introduction to Water Hammer	
5. Water Quality in Distribution Networks Bacterial growth in drinking water, influence of water treatment and distribution on biological stability of drinking water, optimal water		simulations of simple cases (full pump trip, emergency shut down; protection devices: practical methods of surge suppression, direct action,	
Bacterial growth in drinking water, influence of water treatment and distribution on biological stability of drinking water, optimal water	5		
	5.	Bacterial growth in drinking water, influence of water treatment and distribution on biological stability of drinking water, optimal water	

	modelling of chlorine residuals.
WTM-09	Drought & Flood Management And Introduction To Reservoir Operations
	 Objectives: Be able to identify and describe the concept of drought, and describe the different types of drought, the influence of society on drought, and the relationship between drought and water scarcity Develop understanding of structural and non-structural flood resilience measures such as, conventional and innovative structures, early warning systems, etc. Be familiar with concepts of drought monitoring and forecasting, and data and modelling systems used. Be able to describe the principles of reservoir operations and optimisation, and develop operational rules for (multi-purpose) reservoir systems.
1.	Drought and Drought Management – Introduction to the concept of drought and the different types of drought. How these are related in time. Drought as a natural phenomenon and the influence of society on drought. Concepts of drought risk, and the constituent components of drought hazard and drought vulnerability. Drought Management and the development of drought management planning.
2.	Drought Monitoring and Forecasting – Concepts of drought indicators and the use of drought indicators in monitoring different types of drought. Drought Monitoring systems. Drought Forecasting and drought Forecasting systems. Data requirements. Exercise in using global data to characterise drought in different parts of the world.
3.	Flood and Flood Management & Ethics of risk – Introduction to floods and flooding. Introduction to urban floods and urban water systems. Introduction to environmental systems. Introduction to the effects of climate variability on the hydrology that affects urban areas, urban hydrology as a very fast rainfall-runoff process, selection of appropriate time steps in urban runoff modelling, global, regional and local climate models, development of climate change scenarios. Introduction to the basic theory of ethics and its application to the flood risk management.
4.	Structural and Non-structural Urban Flood Management Measures – Sustainable structural and non-structural urban flood management measures such as: amplification of pipe networks, open channels, detention/retention basins, on-site- detention, on-site-infiltration, on-site- retention, SUDS, stormwater sensitive urban design, asset management and multi-objective optimization of rehabilitation measures (use of computational intelligence), design and employment of early warning systems.

5.	Introduction to Reservoir Operations – Principles of reservoir operation rules, including standard operation policy, hedging and flood control rules. Long term versus short term reservoir operation. Establishing objective functions for multiple- purpose reservoirs. Planning and implementation of environmental flows.	
WTM-10	Assignments Based Field Work	
WTM-11	Internship At The Host Company	

Refere	nce Books:
1.	Water Supply Engineering V-1 - P.N. Modi
2.	Water Supply Engineering: Environmental Engineering (volume 1) - Santhosh Kumar Garg
3.	Wastewater Engineering: Treatment and Reuse - George Tchobanoglous, Franklin Burton, H.
	David Stensel - Metcalf & Eddy.
4.	Water Supply Engineering: Environmental Engineering – I - (Paperback, Dr. B.C. Punmia, Er.
	Ashok Kumar
5.	Sewage Disposal and Air Pollution Engineering - S.K. Garg
6.	Waste Water Treatment 3Ed - M. N. Dutta and A. K. Rao
7.	Faecal Sludge Management in Marathi - Linda Strande, Mariska Ronteltap, Damir Brdjanovic
	& Unity Publication
8.	Faecal Sludge Management in Hindi - Linda Strande, Mariska Ronteltap, Damir Brdjanovic &
	Unity Publication
9.	Experimental Methods in Wastewater Treatment in Marathi - Editor(s):Mark C.M. van
	Loosdrecht, P.H. Nielsen, C.M. Lopez-Vazquez, Damir Brdjanovic & Unity Publication
10.	Experimental Methods in Wastewater Treatment in Hindi - Editor(s):Mark C.M. van
	Loosdrecht, P.H. Nielsen, C.M. Lopez-Vazquez, Damir Brdjanovic & Unity Publication
11.	CPHEEO Manual, Govt of India